Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience
Article . 2005
versions View all 2 versions

The distribution of small and intermediate conductance calcium-activated potassium channels in the rat sensory nervous system

Authors: Mongan, L.C.; Hill, M.J.; Chen, M.X.; Tate, S.N.; Collins, S.D.; Buckby L.; Grubb, B.D.;

The distribution of small and intermediate conductance calcium-activated potassium channels in the rat sensory nervous system

Abstract

Small (SK) and intermediate (IK) conductance calcium-activated potassium channels are candidate ion channels for the regulation of excitability in nociceptive neurones. We have used unique peptide-directed antisera to describe the immunocytochemical distribution of the known isoforms of these ion channels in dorsal root ganglia (DRG) and spinal cord of the rat. These investigations sought to characterize further the phenotype and hence possible functions of nociceptive neurone subpopulations in the rat. In addition, using Western blotting, we sought to determine the level of protein expression of SK and IK channels in sensory nervous tissues following induction of inflammation (Freund's Complete Adjuvant (FCA) arthritis model) or nerve injury (chronic constriction injury model). We show that SK1, SK2, SK3 and IK1 are all expressed in DRG and spinal cord. Morphometric analysis revealed that SK1, SK2 and IK1 were preferentially localized to neurones having cell bodies <1000 microm2 (putative nociceptors) in DRG. Dual labeling immunocytochemistry showed that these ion channels co-localize with both CGRP and IB4, known markers of nociceptor sub-populations. SK2 was localized almost exclusively in the superficial laminae of the spinal cord dorsal horn, the region in which many sensory afferents terminate; the distribution of SK1 and IK1 was more widespread in spinal cord, although some preferential labeling within the dorsal horn was observed in the case of IK1. Here we show evidence for a distinctive pattern of expression for certain members of the calcium-activated potassium channel family in the rat DRG.

Keywords

Male, 570, IK1, 610, Pain, CHO Cells, Cell Line, Potassium Channels, Calcium-Activated, SK1, SK2, /dk/atira/pure/subjectarea/asjc/2800/2800, Cricetinae, Ganglia, Spinal, Animals, Humans, Neurons, Afferent, Rats, Wistar, Electric Conductivity, spinal cord, Rats, Inbred Strains, name=General Neuroscience, Intermediate-Conductance Calcium-Activated Potassium Channels, Rats, Disease Models, Animal, Spinal Cord, DRG

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 10%
Top 10%
Top 10%