Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Disassociation of Histone Deacetylase-3 from Normal Huntingtin Underlies Mutant Huntingtin Neurotoxicity

Authors: Farah H, Bardai; Pragya, Verma; Chad, Smith; Varun, Rawat; Lulu, Wang; Santosh R, D'Mello;

Disassociation of Histone Deacetylase-3 from Normal Huntingtin Underlies Mutant Huntingtin Neurotoxicity

Abstract

Huntington's disease (HD) is caused by a polyglutamine expansion within the huntingtin (Htt) protein. Both loss of function of normal Htt and gain of a toxic function by the polyglutamine-expanded mutant Htt protein have been proposed to be responsible for HD, although the molecular mechanisms involved are unclear. We show that Htt is a neuroprotective protein in both HD-related and unrelated model systems. Neuroprotection by Htt is mediated by its sequestration of histone deacetylase-3 (HDAC3), a protein known to promote neuronal death. In contrast to the normal Htt, mutant Htt interacts poorly with HDAC3. However, expression of mutant Htt liberates HDAC3 from Htt, thus de-repressing its neurotoxic activity. Indeed, mutant Htt neurotoxicity is inhibited by the knockdown of HDAC3 and markedly reduced in HDAC3-deficient neurons. A reduction in Htt-HDAC3 interaction is also seen in neurons exposed to other apoptotic stimuli and in the striatum of R6/2 HD mice. Our results suggest that the robust interaction between Htt and HDAC3 along with the ability of mutant Htt to disrupt this association while not itself interacting with HDAC3 provides an explanation for both the loss-of-function and gain-of-toxic-function mechanisms proposed for HD. Moreover, our results identify HDAC3 as an essential player in mutant Htt-induced neurodegeneration.

Related Organizations
Keywords

Neurons, Microfilament Proteins, Apoptosis, Corpus Striatum, Histone Deacetylases, DNA-Binding Proteins, Disease Models, Animal, Mice, Huntington Disease, Mutation, Animals, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
bronze