Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Reproductionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Reproduction
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Reproduction
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Mitogen-activated protein kinase (MAPK) pathways mediate embryonic responses to culture medium osmolarity by regulating Aquaporin 3 and 9 expression and localization, as well as embryonic apoptosis

Authors: Christine E. Bell; Nathalie M.K. Larivière; Andrew J. Watson; P. H. Watson; P. H. Watson;

Mitogen-activated protein kinase (MAPK) pathways mediate embryonic responses to culture medium osmolarity by regulating Aquaporin 3 and 9 expression and localization, as well as embryonic apoptosis

Abstract

In order to advance the development of culture conditions and increase the potential for supporting normal preimplantation embryo development in vitro, it is critical to define the mechanisms that early embryos utilize to survive in culture. We investigated the mechanisms that embryos employ in response to culture medium osmolarity. We hypothesized that mitogen-activated protein kinase (MAPK) pathways mediate responses to hyperosmotic stress by regulating Aquaporin (AQP) 3 and 9 expression as well as embryonic apoptosis.Real-time reverse transcription and polymerase chain reaction and whole-mount immunofluorescence were used to determine the relative mRNA levels and protein localization patterns of AQP 3 and 9 after hyperosmotic medium treatment.At 6 and 24 h, a significant increase in Aqp 3 and 9 mRNA was observed in the sucrose hyperosmotic treatment compared with standard medium and glycerol controls. Blockade of MAPK14/11 negated the increase in Aqp 3 and 9 mRNA levels, whereas culture in a MAPK8 blocker did not. Hyperosmotic sucrose treatment significantly increased embryonic apoptosis which was negated in the presence of MAPK8 blocker, but not MAPK14/11 blocker.MAPK14/11 activation is a component of the rapid adaptive stress response mechanism that includes the effects of AQP mRNA expression and protein localization, whereas the MAPK8 pathway is a regulator of apoptosis.

Keywords

Glycerol, Male, 570, Sucrose, MAP Kinase Signaling System, Messenger, 610, Apoptosis, Aquaporins, Embryo Culture Techniques, Mitogen-Activated Protein Kinase 14, Mice, Mitogen-Activated Protein Kinase 11, Pregnancy, Animals, Mitogen-Activated Protein Kinase 8, RNA, Messenger, Enzyme Inhibitors, Aquaporin 3, Osmolar Concentration, Obstetrics and Gynecology, Water-Electrolyte Balance, Culture Media, Blastocyst, RNA, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
Green
bronze