Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Cyclearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Cycle
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Cycle
Article . 2010 . Peer-reviewed
Data sources: Crossref
Cell Cycle
Article . 2010
versions View all 3 versions

Regulation of the PML tumor suppressor in drug-induced senescence of human normal and cancer cells by JAK/STAT-mediated signaling

Authors: Jiri Bartek; Jana Dobrovolna; Hana Hanzlikova; Pavlina Duskova; Peter Barath; Marketa Vancurova; Martin Kosar; +4 Authors

Regulation of the PML tumor suppressor in drug-induced senescence of human normal and cancer cells by JAK/STAT-mediated signaling

Abstract

The Promyelocytic leukemia protein (PML) tumor suppressor is upregulated in several forms of cellular senescence, however the mechanism of its induction is elusive. Here we show that genotoxic drugs that induce senescence, such as 5-bromo-2'deoxyuridine (BrdU), thymidine (TMD), distamycin A (DMA), aphidicolin (APH), etoposide (ET) and camptothecin (CPT) all evoke expansion of PML nuclear compartment and its association with persistent DNA lesions in several human cancer cell lines and normal diploid fibroblasts. This phenomenon was accompanied by elevation of PML transcripts after treatment with BrdU, TMD, DMA and CPT. Chemical inhibition of all JAK kinases and RNAi-mediated knock-down of JAK1 suppressed PML expression, implicating JAK/STAT-mediated signaling in regulation of the PML gene. As PML protein stability remained unchanged after drug treatment, decreased protein turnover was unlikely to explain the senescence-associated increased abundance of PML. Furthermore, binding activity of Interferon Stimulated Response Element (ISRE) within the PML gene promoter, and suppression of reporter gene activity after deletion of ISRE from the PML promoter region suggested that drug-induced PML transcription is controlled via transcription factors interacting with this element. Collectively, our data show that upregulation of the PML tumor suppressor in cellular senescence triggered by diverse drugs including clinically used anti-cancer chemotherapeutics relies on stimulation of PML transcription by JAK/STAT-mediated signaling, possibly evoked by the autocrine/paracrine activities of senescence-associated cytokines.

Related Organizations
Keywords

Cell Nucleus, Transcription, Genetic, Gene Expression Regulation, Leukemic, Tumor Suppressor Proteins, Nuclear Proteins, Antineoplastic Agents, Janus Kinase 1, Promyelocytic Leukemia Protein, Response Elements, Cell Compartmentation, STAT Transcription Factors, Cell Line, Tumor, Neoplasms, Humans, RNA, Messenger, Tumor Suppressor Protein p53, Cellular Senescence, DNA Damage, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
bronze
Funded by
Related to Research communities
Cancer Research