Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Evolutionary Bio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Evolutionary Biology
Article . 2007 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Evolutionary Biology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2007
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Evolutionary Biology
Article . 2007
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access LMU
Article . 2007
Data sources: Open Access LMU
versions View all 6 versions

Tic62: a protein family from metabolism to protein translocation

Authors: Balsera, Monica; Stengel, Anna; Soll, Jürgen; Bölter, Bettina;

Tic62: a protein family from metabolism to protein translocation

Abstract

The function and structure of protein translocons at the outer and inner envelope membrane of chloroplasts (Toc and Tic complexes, respectively) are a subject of intensive research. One of the proteins that have been ascribed to the Tic complex is Tic62. This protein was proposed as a redox sensor protein and may possibly act as a regulator during the translocation process. Tic62 is a bimodular protein that comprises an N-terminal module, responsible for binding to pyridine nucleotides, and a C-terminal module which serves as a docking site for ferredoxin-NAD(P)-oxido-reductase (FNR). This work focuses on evolutionary analysis of the Tic62-NAD(P)-related protein family, derived from the comparison of all available sequences, and discusses the structure of Tic62.Whereas the N-terminal module of Tic62 is highly conserved among all oxyphototrophs, the C-terminal region (FNR-binding module) is only found in vascular plants. Phylogenetic analyses classify four Tic62-NAD(P)-related protein subfamilies in land plants, closely related to members from cyanobacteria and green sulphur bacteria. Although most of the Tic62-NAD(P)-related eukaryotic proteins are localized in the chloroplast, one subgroup consists of proteins without a predicted transit peptide. The N-terminal module of Tic62 contains the structurally conserved Rossman fold and probably belongs to the extended family of short-chain dehydrogenases-reductases. Key residues involved in NADP-binding and residues that may attach the protein to the inner envelope membrane of chloroplasts or to the Tic complex are proposed.The Tic62-NAD(P)-related proteins are of ancient origin since they are not only found in cyanobacteria but also in green sulphur bacteria. The FNR-binding module at the C-terminal region of the Tic62 proteins is probably a recent acquisition in vascular plants, with no sequence similarity to any other known motifs. The presence of the FNR-binding domain in vascular plants might be essential for the function of the protein as a Tic component and/or for its regulation.

Country
Germany
Related Organizations
Keywords

Models, Molecular, Chloroplasts, Evolution, Pyridines, Molecular Sequence Data, Arabidopsis, Cyanobacteria, Chlorobi, Evolution, Molecular, QH359-425, Ecology, Evolution, Behavior and Systematics, Phylogeny, Likelihood Functions, Base Sequence, Models, Genetic, Arabidopsis Proteins, Computational Biology, Eukaryota, Membrane Transport Proteins, Bayes Theorem, Ferredoxin-NADP Reductase, Multigene Family, Sequence Alignment, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
Green
gold