Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Bone and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Bone and Mineral Research
Article . 2011 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Telomerase-deficient mice exhibit bone loss owing to defects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment

Authors: Michael Amling; Moustapha Kassem; Moustapha Kassem; Hamid Saeed; Weimin Qiu; Basem M. Abdallah; Philip Catala-Lehnen; +1 Authors

Telomerase-deficient mice exhibit bone loss owing to defects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment

Abstract

Abstract Telomere shortening owing to telomerase deficiency leads to accelerated senescence of human skeletal (mesenchymal) stem cells (MSCs) in vitro, whereas overexpression leads to telomere elongation, extended life span, and enhanced bone formation. To study the role of telomere shortening in vivo, we studied the phenotype of telomerase-deficient mice (Terc−/−). Terc−/− mice exhibited accelerated age-related bone loss starting at 3 months of age and during 12 months of follow-up revealed by dual-energy X-ray absorptiometric (DXA) scanning and by micro–computed tomography (µCT). Bone histomorphometry revealed decreased mineralized surface and bone-formation rate as well as increased osteoclast number and size in Terc−/− mice. Also, serum total deoxypyridinoline (tDPD) was increased in Terc−/− mice. MSCs and osteoprogenitors isolated from Terc−/− mice exhibited intrinsic defects with reduced proliferating cell number and impaired osteogenic differentiation capacity. In addition, the Terc−/−-MSC cultures accumulated a larger proportion of senescent β-galactosidase+ cells and cells exhibiting DNA damage. Microarray analysis of Terc−/− bone revealed significant overexpression of a large number of proinflammatory genes involved in osteoclast (OC) differentiation. Consistently, serum obtained from Terc−/− mice enhanced OC formation of wild-type bone marrow cultures. Our data demonstrate two mechanisms for age-related bone loss caused by telomerase deficiency: intrinsic osteoblastic defects and creation of a proinflammatory osteoclast-activating microenvironment. Thus telomerization of MSCs may provide a novel approach for abolishing age-related bone loss. © 2011 American Society for Bone and Mineral Research.

Keywords

Inflammation, Osteoblasts, Gene Expression Profiling, Osteoclasts, Bone Marrow Cells, Cell Differentiation, Mesenchymal Stem Cells, Models, Biological, Bone and Bones, Mice, Inbred C57BL, Mice, Phenotype, Osteogenesis, Adipocytes, Animals, Humans, Osteoporosis, Cells, Cultured, Cellular Senescence, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 10%
Top 10%
Top 10%
hybrid