Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Strokearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Stroke
Article
Data sources: UnpayWall
Stroke
Article . 2013 . Peer-reviewed
Data sources: Crossref
Stroke
Article . 2013
versions View all 2 versions

Peroxiredoxin 2 Battles Poly(ADP-Ribose) Polymerase 1- and p53-Dependent Prodeath Pathways After Ischemic Injury

Authors: Rehana K, Leak; Lili, Zhang; Yumin, Luo; Peiying, Li; Haiping, Zhao; Xiangrong, Liu; Feng, Ling; +3 Authors

Peroxiredoxin 2 Battles Poly(ADP-Ribose) Polymerase 1- and p53-Dependent Prodeath Pathways After Ischemic Injury

Abstract

Background and Purpose— Ischemic/reperfusion neuronal injury is characterized by accumulation of reactive oxygen species and oxidative DNA damage, which can trigger cell death by various signaling pathways. Two of these modes of death include poly(ADP-ribose) polymerase 1–mediated death or p53- and Bax-mediated apoptosis. The present study tested the hypothesis that peroxiredoxin 2 (PRX2) attenuates DNA damage–mediated prodeath signaling using in vitro and in vivo models of ischemic injury. The impact of this peroxide scavenger on p53- and poly(ADP-ribose) polymerase 1–mediated ischemic death is unknown. Methods— Neuronal PRX2 overexpression in primary cortical cultures and transgenic mice was combined with the poly(ADP-ribose) polymerase 1 inhibitor AG14361. AG14361 was also applied to p53 and Bax knockout cultures and mice and combined with the JNK inhibitor SP600125. DCF fluorescence, apurinic/apyrimidinic sites, single-strand breaks, Comet tail-length, nicotinamide adenine dinucleotide depletion, and viability were assessed in response to oxygen-glucose deprivation in cultures or transient focal cerebral ischemia in mice. Results— PRX2 attenuated reactive oxygen species, DNA damage, nicotinamide adenine dinucleotide depletion, and cell death. PRX2 knockdown exacerbated neuronal death after oxygen and glucose deprivation. PRX2 ameliorated poly(ADP-ribose) polymerase 1, p53, Bax, and caspase activation after ischemia. AG14361 reduced ischemic cell death in wild-type and p53 or Bax knockout cultures and animals but had no additional effect in PRX2-overexpressing mice. AG14361 and p53 knockout elicited additive effects with SP600125 on viability in vitro. Our findings support the existence of multiple parallel prodeath pathways with some crosstalk. Conclusions— The promising therapeutic candidate PRX2 can clamp upstream DNA damage and efficiently inhibit multiple prodeath cascades operating in both parallel and interactive fashions.

Related Organizations
Keywords

Anthracenes, Mice, Knockout, Neurons, MAP Kinase Kinase 4, Apoptosis, Mice, Transgenic, Peroxiredoxins, Brain Ischemia, Rats, Mice, Inbred C57BL, Rats, Sprague-Dawley, Mice, Reperfusion Injury, Animals, Humans, Poly(ADP-ribose) Polymerases, Reactive Oxygen Species, Cells, Cultured, DNA Damage, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Average
bronze