Trafficking and Cell Surface Stability of the Epithelial Na+ Channel Expressed in Epithelial Madin-Darby Canine Kidney Cells
pmid: 11773057
Trafficking and Cell Surface Stability of the Epithelial Na+ Channel Expressed in Epithelial Madin-Darby Canine Kidney Cells
The apically located epithelial Na(+) channel (alphabetagamma-ENaC) plays a key role in the regulation of salt and fluid transport in the kidney and other epithelia, yet its mode of trafficking to the plasma membrane and its cell surface stability in mammalian cells are poorly understood. Because the expression of ENaC in native tissues/cells is very low, we generated epithelial Madin-Darby canine kidney (MDCK) cells stably expressing alphabetagamma-ENaC, where each subunit is tagged differentially at the intracellular C terminus and the beta-subunit is also Myc-tagged at the ectodomain (alpha(HA)beta(Myc,T7)gamma(FLAG)). ENaC expression in these cells was verified by immunoblotting with antibodies to the tags, and patch clamp analysis has confirmed that the tagged channel is functional. Moreover, using electron microscopy, we demonstrated apical, but not basal, membrane localization of ENaC in these cells. The glycosylation pattern of the intracellular pool of ENaC revealed peptide N-glycosidase F and endoglycosidase H sensitivity. Surprisingly, the cell surface pool of ENaC, analyzed by surface biotinylation, was also core glycosylated and lacked detectable endoglycosidase H-resistant channels. Extraction of the channel from cells in Triton X-100 demonstrated that both intracellular and cell surface pools of ENaC are largely soluble. Moreover, floatation assays to analyze the presence of ENaC in lipid rafts showed that both intracellular and cell surface pools of this channel are not associated with rafts. We have shown previously that the total cellular pool of ENaC is turned over rapidly (t(1/2) approximately 1-2 h). Using cycloheximide treatment and surface biotinylation we now demonstrate that the cell surface pool of ENaC has a similarly short half-life (t(1/2) approximately 1 h), unlike the long half-life reported recently for the Xenopus A6 cells. Collectively, these results help elucidate key aspects of ENaC trafficking and turnover rates in mammalian kidney epithelial cells.
- University of Toronto Canada
Glycosylation, Patch-Clamp Techniques, Dose-Response Relationship, Drug, Glycoside Hydrolases, Octoxynol, Cell Membrane, Detergents, Immunoblotting, Epithelial Cells, Lipids, Cell Line, Electrophysiology, Epitopes, Microscopy, Electron, Dogs, Membrane Microdomains, Animals, Biotinylation, Epithelial Sodium Channels, Microscopy, Immunoelectron
Glycosylation, Patch-Clamp Techniques, Dose-Response Relationship, Drug, Glycoside Hydrolases, Octoxynol, Cell Membrane, Detergents, Immunoblotting, Epithelial Cells, Lipids, Cell Line, Electrophysiology, Epitopes, Microscopy, Electron, Dogs, Membrane Microdomains, Animals, Biotinylation, Epithelial Sodium Channels, Microscopy, Immunoelectron
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).116 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
