Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cancer Research
Article . 2009 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2009
versions View all 3 versions

NPM-ALK Oncogenic Tyrosine Kinase Controls T-Cell Identity by Transcriptional Regulation and Epigenetic Silencing in Lymphoma Cells

Authors: AMBROGIO, CHIARA; MARTINENGO, CINZIA; VOENA, claudia; TONDAT, FABRIZIO; RIERA, Ludovica; di Celle PF; INGHIRAMI, Giorgio; +1 Authors

NPM-ALK Oncogenic Tyrosine Kinase Controls T-Cell Identity by Transcriptional Regulation and Epigenetic Silencing in Lymphoma Cells

Abstract

Abstract Transformed cells in lymphomas usually maintain the phenotype of the postulated normal lymphocyte from which they arise. By contrast, anaplastic large cell lymphoma (ALCL) is a T-cell lymphoma with aberrant phenotype because of the defective expression of the T-cell receptor and other T-cell–specific molecules for still undetermined mechanisms. The majority of ALCL carries the translocation t(2;5) that encodes for the oncogenic tyrosine kinase NPM-ALK, fundamental for survival, proliferation, and migration of transformed T cells. Here, we show that loss of T-cell–specific molecules in ALCL cases is broader than reported previously and involves most T-cell receptor–related signaling molecules, including CD3ϵ, ZAP70, LAT, and SLP76. We further show that NPM-ALK, but not the kinase-dead NPM-ALKK210R, downregulated the expression of these molecules by a STAT3-mediated gene transcription regulation and/or epigenetic silencing because this downregulation was reverted by treating ALCL cells with 5-aza-2-deoxycytidine or by knocking down STAT3 through short hairpin RNA. Finally, NPM-ALK increased the methylation of ZAP70 intron 1-exon 2 boundary region, and both NPM-ALK and STAT3 regulated the expression levels of DNA methyltransferase 1 in transformed T cells. Thus, our data reveal that oncogene-deregulated tyrosine kinase activity controls the expression of molecules that determine T-cell identity and signaling. [Cancer Res 2009;69(22):8611–9]

Country
Italy
Related Organizations
Keywords

DNA (Cytosine-5-)-Methyltransferase 1, CD3 Complex, Immunoblotting, Receptors, Antigen, T-Cell, Membrane Proteins, Mice, Transgenic, Protein-Tyrosine Kinases, Phosphoproteins, Immunohistochemistry, Polymerase Chain Reaction, Gene Expression Regulation, Neoplastic, Mice, Phenotype, Animals, Humans, Immunoprecipitation, Lymphoma, Large-Cell, Anaplastic, DNA (Cytosine-5-)-Methyltransferases, Gene Silencing, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research