Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao King's College, Lond...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Science
Article . 2001 . Peer-reviewed
Data sources: Crossref
Science
Article . 2001
versions View all 2 versions

An Iron-Regulated Ferric Reductase Associated with the Absorption of Dietary Iron

Authors: McKie, A T; Barrow, D; Latunde-Dada, G O; Rolfs, A; Sager, G; Mudaly, E; Mudaly, M; +9 Authors

An Iron-Regulated Ferric Reductase Associated with the Absorption of Dietary Iron

Abstract

The ability of intestinal mucosa to absorb dietary ferric iron is attributed to the presence of a brush-border membrane reductase activity that displays adaptive responses to iron status. We have isolated a complementary DNA, Dcytb (for duodenal cytochrome b), which encoded a putative plasma membrane di-heme protein in mouse duodenal mucosa. Dcytb shared between 45 and 50% similarity to the cytochrome b561 family of plasma membrane reductases, was highly expressed in the brush-border membrane of duodenal enterocytes, and induced ferric reductase activity when expressed in Xenopus oocytes and cultured cells. Duodenal expression levels of Dcytb messenger RNA and protein were regulated by changes in physiological modulators of iron absorption. Thus, Dcytb provides an important element in the iron absorption pathway.

Keywords

Male, 570, DNA, Complementary, Microvilli, Duodenum, Nitroblue Tetrazolium, Molecular Sequence Data, 610, Anemia, Cytochrome b Group, Ferric Compounds, Cell Line, Mice, Enterocytes, Intestinal Absorption, Enzyme Induction, Animals, Amino Acid Sequence, Cloning, Molecular, Intestinal Mucosa, Hypoxia, Iron, Dietary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    950
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
950
Top 0.1%
Top 1%
Top 0.1%