Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Microbiology...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Microbiology and Biotechnology
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host

Authors: Cabrera-Valladares, Natividad; Richardson, Anne-Pascale; Olvera, Clarita; Trevino, Luis Gerardo; Lépine, François; Déziel, Éric; Soberón-Chávez, Gloria;

Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host

Abstract

Pseudomonas aeruginosa produces the biosurfactants rhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs). In this study, we report the production of one family of rhamnolipids, specifically the monorhamnolipids, and of HAAs in a recombinant Escherichia coli strain expressing P. aeruginosa rhlAB operon. We found that the availability in E. coli of dTDP-L: -rhamnose, a substrate of RhlB, restricts the production of monorhamnolipids in E. coli. We present evidence showing that HAAs and the fatty acid dimer moiety of rhamnolipids are the product of RhlA enzymatic activity. Furthermore, we found that in the recombinant E. coli, these compounds have the same chain length of the fatty acid dimer moiety as those produced by P. aeruginosa. These data suggest that it is RhlAB specificity, and not the hydroxyfatty acid relative abundance in the bacterium, that determines the profile of the fatty acid moiety of rhamnolipids and HAAs. The rhamnolipids level produced in recombinant E. coli expressing rhlAB is lower than the P. aeruginosa level and much higher than those reported by others in E. coli, showing that this metabolic engineering strategy lead to an increased rhamnolipids production in this heterologous host.

Keywords

570, Carboxylic Acids, Gene Expression, QUORUM, BIOSURFACTANT, PSEUDOMONAS AERUGINOSA, CLONING, Surface-Active Agents, Bacterial Proteins, Genes, Reporter, Operon, Escherichia coli, Thymine Nucleotides, BIOSYNTHESIS, Cloning, Molecular, PRECURSORS, L-RHAMNOSE, Nucleoside Diphosphate Sugars, ENZYMATIC SYNTHESIS, beta-Galactosidase, GENE, Artificial Gene Fusion, Culture Media, Hexosyltransferases, Pseudomonas aeruginosa, RHAMNOLIPIDS, Glycolipids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    97
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
97
Top 10%
Top 10%
Average