Identification of Some Promising Heterocycles Useful in Treatment of Allergic Rhinitis: Virtual Screening, Pharmacophore Mapping, Molecular Docking, and Molecular Dynamics
Identification of Some Promising Heterocycles Useful in Treatment of Allergic Rhinitis: Virtual Screening, Pharmacophore Mapping, Molecular Docking, and Molecular Dynamics
Rhinitis is an allergic disease that causes troubles and restlessness for patients. In this research work we will focus on finding promising organic molecules with potential ability to target histamine receptor with no sedative side effect. Phalazines and their isosteres, pyrimidines and pyridines have been reported to target H1 receptors, for this reason we have searched for library of these basic scaffolds, this library which has 184 organic molecules will be subjected for further explorations through computer aided drug design techniques. Swiss ADMET will be used to gather these compounds in clusters. Cluster with low potential to penetrate BBB is selected for virtual screening through pharmacophore model. Then molecular docking that revealed the stability of the complex formed between the investigated molecules and H1 receptor. ADMET profile showed three compounds (XVIII), (XX), and (XXI) with no toxicity on liver and no effect on CYP2D6, these three compounds were subjected to molecular dynamic simulations and compound (XVIII) showed the most stable complex with the target protein (H1). Finally, we can say this work helped us to find new compounds with promising potential to target H1 without ability to penetrate BBB, so they can be used as useful candidates in treatment of rhinitis and deserve to be subjected for preclinical and clinical investigations.The online version contains supplementary material available at 10.1134/S1068162022330019.
- Xi'an Medical University China (People's Republic of)
- Helwan University Egypt
- Egyptian Russian University Egypt
- Umm al-Qura University Saudi Arabia
- Taif University Saudi Arabia
Article
Article
1 Research products, page 1 of 1
- 2020IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
