Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Development
Article . 1999 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

UASrpg can function as a heterochromatin boundary element in yeast

Authors: X, Bi; J R, Broach;

UASrpg can function as a heterochromatin boundary element in yeast

Abstract

The HM loci in Saccharomyces cerevisiae constitute region-specific but gene-nonspecific repression domains, as a number of heterologous genes transcribed by RNA polymerase II or III are silenced when placed at these loci. The promoters of the Ashbya gossypii TEF gene and the S. cerevisiae TEF1 and TEF2 genes, however, are resistant to transcriptional silencing by the HM silencers in yeast. Moreover, when interposed between the HML alpha genes and the E silencer, certain segments of these promoters block the repression effect of the silencer on the alpha genes. All of these fragments contain UASrpg (upstream activation sequence of ribosome protein genes) composed of multiple binding sites for Rap1. In fact, a 149-bp segment consisting essentially of only three tandem Rap1-binding sites from the UASrpg of yeast TEF2 exhibits silencer-blocking activity. This element also exhibits insulating activity and orientation dependence characteristic of known chromatin boundary elements. Finally, the element blocks the physical spread of heterochromatin initiated at a silencer. This segment provides the first example of chromatin domain boundary or insulator elements in yeast.

Related Organizations
Keywords

Binding Sites, Saccharomyces cerevisiae Proteins, Models, Genetic, Genes, Fungal, Saccharomyces cerevisiae, Peptide Elongation Factors, DNA-Binding Proteins, Fungal Proteins, Peptide Elongation Factor 1, Gene Expression Regulation, Fungal, Heterochromatin, Saccharomycetales, DNA, Fungal, Promoter Regions, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    121
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
121
Top 10%
Top 10%
Top 1%
Published in a Diamond OA journal