Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomaterialsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomaterials
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

The role of endothelial cell-bound Jagged1 in Notch3-induced human coronary artery smooth muscle cell differentiation

Authors: Ying, Xia; Aparna, Bhattacharyya; Eric E, Roszell; Martin, Sandig; Kibret, Mequanint;

The role of endothelial cell-bound Jagged1 in Notch3-induced human coronary artery smooth muscle cell differentiation

Abstract

Phenotype regulation of vascular smooth muscle cells (VSMC) is an important requirement in both tissue engineering and balloon angioplasty strategies. In recent years, it has become increasingly evident that the Notch signalling pathway plays a critical role in regulating vascular morphogenesis during development and the transcription of differentiated VSMC and its maturation. In arteries, Notch3 is the predominant receptor on VSMC and, signalling is initiated upon binding to its ligand, Jagged1. However, little is known on how ligand presenting strategies affect Notch signalling and subsequently upregulation of smooth muscle cell differentiation. In this study, using human coronary artery smooth muscle cells (HCASMC) and human coronary artery endothelial cells (HCAEC), we show several lines of evidence that direct heterocellular cell-cell contact is necessary for VSMC differentiation via Notch3 signalling. First, neither the addition of soluble Jagged1 nor Jagged1 immobilized to protein G beads induced HCASMC differentiation in culture. Second, despite the upregulation of Notch3 expression, EC-conditioned medium failed to induce HCASMC differentiation. However, when HCASMC and HCAEC were co-cultured either on opposite sides of porous membrane or when these cells were co-cultured directly, both Notch3 and VSMC differentiation marker proteins were upregulated. These upregulations were abrogated by Jagged1-specific siRNA. This study provides the first direct evidence that contact of HCASMC and HCAEC is required for regulating smooth muscle cell differentiation. These findings may have clinical importance and therapeutic potential for modulating vascular SMC phenotype during various cardiovascular disease states and in tissue engineering.

Related Organizations
Keywords

Receptors, Notch, Calcium-Binding Proteins, Myocytes, Smooth Muscle, Down-Regulation, Endothelial Cells, Membrane Proteins, Cell Differentiation, Coronary Vessels, Coculture Techniques, Solubility, Culture Media, Conditioned, Cell Adhesion, Humans, Intercellular Signaling Peptides and Proteins, Serrate-Jagged Proteins, Porosity, Receptor, Notch3, Jagged-1 Protein, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%