Downloads provided by UsageCountsThe Ehrlich Pathway for Fusel Alcohol Production: a Century of Research on Saccharomyces cerevisiae Metabolism
The Ehrlich Pathway for Fusel Alcohol Production: a Century of Research on Saccharomyces cerevisiae Metabolism
Saccharomyces cerevisiae has been used for at least eight millennia in the production of alcoholic beverages (41). Along with ethanol and carbon dioxide, fermenting cultures of this yeast produce many low-molecular-weight flavor compounds. These alcohols, aldehydes, organic acids, esters, organic sulfides, and carbonyl compounds have a strong impact on product quality. Indeed, the subtle aroma balance of these compounds in fermented foods and beverages is often used as an organoleptic fingerprint for specific products and brands (42). Food fermentation by yeast and lactic acid bacteria is accompanied by the formation of the aliphatic and aromatic alcohols known as fusel alcohols. Fusel oil, which derives its name from the German word fusel (bad liquor), is obtained during the distillation of spirits and is enriched with these higher alcohols. While fusel alcohols at high concentrations impart off-flavors, low concentrations of these compounds and their esters make an essential contribution to the flavors and aromas of fermented foods and beverages. Fusel alcohols are derived from amino acid catabolism via a pathway that was first proposed a century ago by Ehrlich (13). Amino acids represent the major source of the assimilable nitrogen in wort and grape must, and these amino acids are taken up by yeast in a sequential manner (23, 32). Amino acids that are assimilated by the Ehrlich pathway (valine, leucine, isoleucine, methionine, and phenylalanine) are taken up slowly throughout the fermentation time (32). After the initial transamination reaction (Fig. (Fig.1),1), the resulting α-keto acid cannot be redirected into central carbon metabolism. Before α-keto acids are excreted into the growth medium, yeast cells convert them into fusel alcohols or acids via the Ehrlich pathway. FIG. 1. The Ehrlich pathway. Catabolism of branched-chain amino acids (leucine, valine, and isoleucine), aromatic amino acids (phenylalanine, tyrosine, and trytophan), and the sulfur-containing amino acid (methionine) leads to the formation of fusel acids and ... Current scientific interest in the Ehrlich pathway is supported by increased demands for natural flavor compounds such as isoamyl alcohol and 2-phenylethanol, which can be produced from amino acids in yeast-based bioconversion processes (14), as well as by the need to control flavor profiles of fermented food products. The goal of this paper is to present a concise centenary overview of the biochemistry, molecular biology, and physiology of this important pathway in S. cerevisiae.
- Delft University of Technology Netherlands
- Cardiff University United Kingdom
Alcohols, Saccharomyces cerevisiae, Metabolic Networks and Pathways
Alcohols, Saccharomyces cerevisiae, Metabolic Networks and Pathways
28 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1K popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 0.1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1% visibility views 6 download downloads 22 - 6views22downloads
Views provided by UsageCounts
Downloads provided by UsageCounts
