A 1.1-Mb Segmental Deletion on the X Chromosome Causes Meiotic Failure in Male Mice
A 1.1-Mb Segmental Deletion on the X Chromosome Causes Meiotic Failure in Male Mice
The mammalian X chromosome contains a large number of multicopy genes that are expressed during spermatogenesis. The roles of these genes during germ cell development and the functional significance of gene multiplication remain mostly unexplored, as the presence of multicopy gene families poses a challenge for genetic studies. Here we report the deletion of a 1.1-Mb segment of the mouse X chromosome that is syntenic with the human Xq22.1 region and contains 20 genes that are expressed predominantly in testis and brain, including three members of the nuclear export factor gene family (Nxf2, Nxf3, and Nxf7) and five copies of preferentially expressed antigen in melanoma-like 3 (Pramel3). We have shown that germline-specific Cre/loxP-mediated deletion of this 1.1-Mb segment is efficient and causes defective chromosomal synapsis, meiotic arrest, and sterility in male mice. Our results demonstrate that this 1.1-Mb region contains one or more novel X-linked factors that are essential for male meiosis.
- The University of Texas System United States
- The University of Texas at San Antonio United States
- University of Pennsylvania United States
Male, X Chromosome, Base Sequence, Sperm Count, Meiosis, Mice, Fertility, Germ Cells, Testis, Animals, Spermatogenesis, Infertility, Male, Sequence Deletion
Male, X Chromosome, Base Sequence, Sperm Count, Meiosis, Mice, Fertility, Germ Cells, Testis, Animals, Spermatogenesis, Infertility, Male, Sequence Deletion
58 Research products, page 1 of 6
- 2005IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
