Molecular pathways that influence human tau-induced pathology in Caenorhabditis elegans
doi: 10.1093/hmg/ddl067
pmid: 16600994
Molecular pathways that influence human tau-induced pathology in Caenorhabditis elegans
Mutations in the gene encoding tau cause frontotemporal dementia with parkinsonism--chromosome 17 type (FTDP-17). In FTDP-17, Alzheimer's disease, and other tauopathies, aggregated hyper-phosphorylated tau forms the neurofibrillary tangles characteristic of these disorders. We previously reported a Caenorhabditis elegans model for tauopathies using human normal and FTDP-17 mutant tau as transgenes. Neuronal transgene expression caused insoluble phosphorylated tau accumulation, neurodegeneration and uncoordinated (Unc) movement. Here we describe a genome-wide RNA-mediated interference (RNAi) screen for genes that modify the tau-induced Unc phenotype. We tested RNAi sequences for 16,757 genes and found 75 that enhanced the transgene-induced Unc phenotype. Forty-six of these genes have sequence similarity to known human genes and fall into a number of broad classes including kinases, chaperones, proteases and phosphatases. The remaining 29 modifiers have sequence similarity only with other nematode genes. To determine if the enhancers are specific for the tau-induced Unc behavior, we exposed several non-tau Unc mutants to tau RNAi enhancer clones. Fifteen enhancers modified phenotypes in multiple Unc mutants, whereas 60 modified only the Unc phenotype in the tau transgenic lines. We also introduced the tau transgene into the background of genetic loss-of-function mutations for a subset of the enhancer genes. Tau transgenic animals homozygous for loss of these enhancer genes exhibited increased impaired motility relative to the tau transgene line alone. This work uncovers novel candidate genes that prevent tau toxicity, as well as genes previously implicated in tau-mediated neurodegeneration.
- Geriatric Research Education and Clinical Center United States
- Veterans Health Administration United States
- University of Washington United States
Protein Folding, Hydrolysis, Nerve Tissue Proteins, tau Proteins, Nerve Regeneration, Animals, Genetically Modified, Disease Models, Animal, Phenotype, Animals, Heredodegenerative Disorders, Nervous System, Humans, RNA Interference, Transgenes, Caenorhabditis elegans, Signal Transduction
Protein Folding, Hydrolysis, Nerve Tissue Proteins, tau Proteins, Nerve Regeneration, Animals, Genetically Modified, Disease Models, Animal, Phenotype, Animals, Heredodegenerative Disorders, Nervous System, Humans, RNA Interference, Transgenes, Caenorhabditis elegans, Signal Transduction
110 Research products, page 1 of 11
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).133 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
