Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Heart Fa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation Heart Failure
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Peroxisome Proliferator Activated Receptor-α Association With Silent Information Regulator 1 Suppresses Cardiac Fatty Acid Metabolism in the Failing Heart

Authors: Junichi Sadoshima; Takanobu Yamamoto; Peiyong Zhai; Jaemin Byun; Shinichi Oka; Yoshiyuki Ikeda; Chiao-Po Hsu;

Peroxisome Proliferator Activated Receptor-α Association With Silent Information Regulator 1 Suppresses Cardiac Fatty Acid Metabolism in the Failing Heart

Abstract

Background— Heart failure is accompanied by changes in cardiac metabolism characterized by reduced fatty acid (FA) utilization. However, the underlying mechanism and its causative involvement in the progression of heart failure are poorly understood. The peroxisome proliferator activated receptor-α (PPARα)/retinoid X receptor (RXR) heterodimer promotes transcription of genes involved in FA metabolism through binding to the PPAR response element, called direct repeat 1 (DR1). Silent information regulator 1 (Sirt1) is a histone deacetylase, which interacts with PPARα. Methods and Results— To investigate the role of PPARα in the impaired FA utilization observed during heart failure, genetically altered mice were subjected to pressure overload. The DNA binding of PPARα, RXRα, and Sirt1 to DR1 was evaluated with oligonucleotide pull-down and chromatin immunoprecipitation assays. Although the binding of PPARα to DR1 was enhanced in response to pressure overload, that of RXRα was attenuated. Sirt1 competes with RXRα to dimerize with PPARα, thereby suppressing FA utilization in the failing heart. DR1 sequence analysis indicated that the typical DR1 sequence favors PPARα/RXRα heterodimerization, whereas the switch from RXRα to Sirt1 takes place on degenerate DR1s. Sirt1 bound to PPARα through a region homologous to the PPARα binding domain in RXRα. A short peptide corresponding to the RXRα domain not only inhibited the interaction between PPARα and Sirt1 but also improved FA metabolism and ameliorated cardiac dysfunction. Conclusions— A change in the heterodimeric partner of PPARα from RXRα to Sirt1 is responsible for the impaired FA metabolism and cardiac dysfunction in the failing heart.

Keywords

Heart Failure, Fatty Acids, Lipid Metabolism, Disease Models, Animal, Mice, Retinoid X Receptors, Sirtuin 1, Case-Control Studies, Animals, Humans, PPAR alpha, RNA, Messenger, Dimerization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
bronze