Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genome Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genome Research
Article
Data sources: UnpayWall
Genome Research
Article . 1997 . Peer-reviewed
Data sources: Crossref
Genome Research
Article . 1997
versions View all 2 versions

Large-scale sequencing in human chromosome 12p13: experimental and computational gene structure determination.

Authors: M A, Ansari-Lari; Y, Shen; D M, Muzny; W, Lee; R A, Gibbs;

Large-scale sequencing in human chromosome 12p13: experimental and computational gene structure determination.

Abstract

The detailed genomic organization of a gene-dense region at human chromosome 12p13, spanning 223 kb of contiguous sequence, was determined. This region is composed of 20 genes and several other expressed sequences. Experimental tools including RT-PCR and cDNA sequencing, combined with gene prediction programs, were utilized in the analysis of the sequence. Various computer software programs were employed for sequence similarity searches and functional predictions. The high number of genes with diverse functions and complex transcriptional patterns make this region ideal for addressing challenges of gene discovery and genomic characterization amenable to large-scale sequence analysis.

Related Organizations
Keywords

Genomic Library, Chromosomes, Human, Pair 12, DNA, Complementary, Sequence Homology, Amino Acid, Molecular Sequence Data, Chromosome Mapping, Computational Biology, Gene Expression, Nerve Tissue Proteins, RNA-Directed DNA Polymerase, Exons, Sequence Analysis, DNA, Polymerase Chain Reaction, Introns, Alternative Splicing, Multigene Family, Humans, Amino Acid Sequence, Glycolysis, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
bronze