Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1994 . Peer-reviewed
Data sources: Crossref
Development
Article . 1994
versions View all 2 versions

Down-regulation of Drosophila Egf-r mRNA levels following hyperactivated receptor signaling

Authors: M A, Sturtevant; J W, O'Neill; E, Bier;

Down-regulation of Drosophila Egf-r mRNA levels following hyperactivated receptor signaling

Abstract

ABSTRACT Internalization of ligand-receptor complexes is a well-documented mechanism for limiting the duration and magnitude of a signaling event. In the case of the EGF-Receptor (EGF-R), exposure to EGF or TGF-α results in internalization of up to 95% of the surface receptor pool within 5 minutes of exposure to ligand. In this report, we show that levels of Drosophila Egf-r mRNA are strongly down-regulated in epidermal cells likely to have recently undergone high levels of EGF-R signaling. The cells in which Egf-r mRNA levels are down-regulated express the rhomboid gene, which is thought to locally amplify EGF-R signaling. Widespread Egf-r mRNA down-regulation can be induced by ubiquitous expression of rhomboid or by eliminating the Gap1 gene. These results suggest that cells engaged in intense EGF-R/RAS signaling limit the duration of the signal through a combination of short-acting negative feedback mechanisms such as receptor internalization followed by a longer lasting reduction in receptor transcript levels. Control of Egf-r mRNA levels by altering transcription or mRNA stability is a new tier of regulation to be considered in analysis of EGF-R signaling during development.

Keywords

Transcription, Genetic, Down-Regulation, Membrane Proteins, Feedback, ErbB Receptors, Insect Hormones, Animals, Drosophila Proteins, Drosophila, RNA, Messenger, Receptors, Invertebrate Peptide, Protein Kinases, In Situ Hybridization, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%