Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hypertensionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hypertension
Article
Data sources: UnpayWall
Hypertension
Article . 2011 . Peer-reviewed
Data sources: Crossref
Hypertension
Article . 2011
versions View all 2 versions

A Disintegrin and Metalloprotease 17 Mediates Neointimal Hyperplasia in Vasculature

Authors: Akira Takaguri; Michael V. Autieri; Akinari Hinoki; Satoru Eguchi; Keita Kimura; Allison M. Bourne;

A Disintegrin and Metalloprotease 17 Mediates Neointimal Hyperplasia in Vasculature

Abstract

The requirement of a metalloprotease, a disintegrin and metalloprotease 17 (ADAM17) for the growth of cultured vascular smooth muscle cells has been demonstrated in vitro. However, whether this metalloprotease is responsible for vascular remodeling in vivo remains unanswered. Rat carotid arteries were analyzed 2 weeks after a balloon angioplasty. The neointimal cells were strongly positive for ADAM17 immunostaining. Marked inhibition of intimal hyperplasia was observed in a dominant-negative ADAM17 adenovirus-treated carotid artery. Proliferating cell nuclear antigen-positive cells and phospho-epidermal growth factor receptor-positive cells in the neointima were reduced by dominant-negative ADAM17 as well. In contrast, the neointima formation, proliferating cell nuclear antigen-positive cells, and phospho-epidermal growth factor receptor-positive cells were markedly enhanced by wild-type ADAM17 adenovirus. In conclusion, ADAM17 activation is involved in epidermal growth factor receptor activation and subsequent neointimal hyperplasia after vascular injury. ADAM17 could be a novel therapeutic target for pathophysiological vascular remodeling.

Related Organizations
Keywords

Male, Hyperplasia, ADAM17 Protein, Immunohistochemistry, Muscle, Smooth, Vascular, Rats, ErbB Receptors, Rats, Sprague-Dawley, ADAM Proteins, Carotid Arteries, Neointima, Animals, Endothelium, Vascular, Carotid Artery Injuries, Angioplasty, Balloon

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
bronze