Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1997 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Negative Control of Heavy Metal Uptake by the Saccharomyces cerevisiae BSD2 Gene

Authors: X F, Liu; F, Supek; N, Nelson; V C, Culotta;

Negative Control of Heavy Metal Uptake by the Saccharomyces cerevisiae BSD2 Gene

Abstract

We have previously shown that mutations in the Saccharomyces cerevisiae BSD2 gene suppress oxidative damage in cells lacking superoxide dismutase and also lead to hyperaccumulation of copper ions. We demonstrate here that bsd2 mutant cells additionally accumulate high levels of cadmium and cobalt. By biochemical fractionation and immunofluorescence microscopy, BSD2 exhibited localization to the endoplasmic reticulum, suggesting that BSD2 acts at a distance to inhibit metal uptake from the growth medium. This BSD2 control of ion transport occurs independently of the CTR1 and FET4 metal transport systems. Genetic suppressor analysis revealed that hyperaccumulation of copper and cadmium in bsd2 mutants is mediated through SMF1, previously shown to encode a plasma membrane transporter for manganese. A nonsense mutation removing the carboxyl-terminal hydrophobic domain of SMF1 was found to mimic a smf1 gene deletion by eliminating the copper and cadmium toxicity of bsd2 mutants and also by precluding the bsd2 suppression of superoxide dismutase deficiency. However, inactivation of SMF1 did not eliminate the elevated cobalt levels in bsd2 mutants. Instead, this cobalt accumulation was found to be specifically mediated through the SMF1 homologue, SMF2. Hence, BSD2 prevents metal hyperaccumulation by exerting negative control over the SMF1 and SMF2 metal transport systems.

Keywords

Genotype, Superoxide Dismutase, Genes, Fungal, Cobalt, Saccharomyces cerevisiae, Culture Media, Kinetics, Oxidative Stress, Suppression, Genetic, Metals, Heavy, Gene Deletion, Cadmium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    160
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
160
Top 10%
Top 1%
Top 10%
gold