Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Systems Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Systems Biology
Article . 2012 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Growth-related model of the GAL system in Saccharomyces cerevisiae predicts behaviour of several mutant strains

Authors: PANNALA, VR; HAZARIKA, SJ; BHAT, PJ; BHARTIYA, S; VENKATESH, KV;

Growth-related model of the GAL system in Saccharomyces cerevisiae predicts behaviour of several mutant strains

Abstract

The genetic regulatory network responds dynamically to perturbations in the intracellular and extracellular environments of an organism. The GAL system in the yeast Saccharomyces cerevisiae has evolved to utilise galactose as an alternative carbon and energy source, in the absence of glucose in the environment. This work contains a modified dynamic model for GAL system in S. cerevisiae, which includes a novel mechanism for Gal3p activation upon induction with galactose. The modification enables the model to simulate the experimental observation that in absence of galactose, oversynthesis of Gal3p can also induce the GAL system. Subsequently, the model is related to growth on galactose and glucose in a structured manner. The growth-related models are validated with experimental data for growth on individual substrates as well as mixed substrates. Finally, the model is tested for its prediction of a variety of known mutant behaviours. The exercise shows that the authors' model with a single set of parameters is able to capture the rich behaviour of the GAL system in S. cerevisiae. [Includes supplementary material].

Keywords

Saccharomyces cerevisiae Proteins, Monosaccharide Transport Proteins, Kluyveromyces-Lactis, Activation, Network, 612, Saccharomyces cerevisiae, Models, Biological, Genetic Switch, Galactokinase, Gene Expression Regulation, Fungal, Glucose Repression, Gene Regulatory Networks, Galactose Regulon, Cell Proliferation, Galactose, Transcriptional Memory, Yeast, Regulatory Proteins, Culture Media, Glucose, Mutation, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
gold