Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Neuroscien...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trends in Neurosciences
Article . 1997 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Building a brain: developmental insights in insects

Authors: Reichert, H.; Boyan, G.;

Building a brain: developmental insights in insects

Abstract

Understanding the cellular, molecular and genetic mechanisms involved in building the brain remains one of the most challenging problems of neurobiology. In this article, we review recent work on the developmental mechanisms that generate the embryonic brain in insects. We compare some of the early developmental events that occur in the insect brain with those that operate during brain development in vertebrates and find that numerous parallels are present at both the cellular and the molecular levels. Thus, the roles of glial cells in prefiguring axon pathways, the function of pioneer neurons in establishing axon pathways, and the formation of a primary axon scaffolding are features of embryonic brain development in both insects and vertebrates. Moreover, at the molecular genetic level homologous regulatory genes control morphogenesis, regionalization and patterning during embryonic brain development in both insects and vertebrates. This indicates that there might be universal mechanisms for brain development, and that knowledge gained from Drosophila and other insects is relevant to our understanding of brain development in other more complex organisms, including man.

Keywords

Animals, Brain, Drosophila, Grasshoppers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 10%
Top 10%
Top 10%