Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2008
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2008 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Promotion of spermatogonial proliferation by neuregulin 1 in newt (Cynops pyrrhogaster) testis

Authors: Shin Ichi Abe; Osamu Nishimura; Junko Ueda; Kiyokazu Agata; Hiroshi Tarui; Ichiro Uchida; Yukako Hirao; +3 Authors

Promotion of spermatogonial proliferation by neuregulin 1 in newt (Cynops pyrrhogaster) testis

Abstract

We have previously shown that mammalian follicle-stimulating hormone (FSH) promotes the proliferation of spermatogonia and their differentiation into primary spermatocytes in organ culture of newt testis. In the current study, we performed microarray analysis to isolate local factors secreted from somatic cells upon FSH treatment and acting on the germ cells. We identified neuregulin 1 (NRG1) as a novel FSH-upregulated clone homologous to mouse NRG1 known to control cell proliferation, differentiation and survival in various tissues. We further isolated cDNAs encoding two different clones. Amino acid sequences of the two clones were 75% and 94% identical to Xenopus leavis immunoglobulin (Ig)-type and cysteine-rich domain (CRD)-type NRG1, respectively, which had distinct sequences in their N-terminal region but identical in their epidermal growth factor (EGF)-like domain. Semi-quantitative and quantitative PCR analyses indicated that both clones were highly expressed at spermatogonial stage than at spermatocyte stage. In vitro FSH treatment increased newt Ig-NRG1 (nIg-NRG1) mRNA expression markedly in somatic cells, whereas newt CRD-NRG1 (nCRD-NRG1) mRNA was only slightly increased by FSH. To elucidate the function of newt NRG1 (nNRG1) in spermatogenesis, recombinant EGF domain of nNRG1 (nNRG1-EGF) was added to organ and reaggregated cultures with or without somatic cells: it promoted spermatogonial proliferation in all cases. Treatment of the cultures with the antibody against nNRG1-EGF caused remarkable suppression of spermatogonial proliferation activated by FSH. These results indicated that nNRG1 plays a pivotal role in promoting spermatogonial proliferation by both direct effect on spermatogonia and indirect effect via somatic cells in newt testes.

Keywords

Male, Embryology, DNA, Complementary, Neuregulin-1, Molecular Sequence Data, Antibodies, Organ Culture Techniques, Testis, Animals, Protein Isoforms, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, Cell Proliferation, Epidermal Growth Factor, Gene Expression Regulation, Developmental, Salamandridae, Recombinant Proteins, Spermatogonia, Organ Specificity, Follicle Stimulating Hormone, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
hybrid