Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Article . 2004 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Metabolic alteration of the N-glycan structure of a protein from patients with a heterozygous protein deficiency

Authors: Robert J. Linhardt; Sybil C. Lang; Fuming Zhang; Fuming Zhang; Andrew D. Bries; John M. Weiler; David W. Murhammer; +1 Authors

Metabolic alteration of the N-glycan structure of a protein from patients with a heterozygous protein deficiency

Abstract

Glycosylation, an important post-translation modification, could alter biological activity or influence the clearance rates of glycoproteins. We report here the first example of a heterozygous protein deficiency leading to metabolic alteration of N-glycan structures in residual secreted protein. Analysis of C1 esterase inhibitor (C1INH) glycans from normal individuals and patients with hereditary deficiency of C1INH demonstrated identical O-glycan structures but the N-glycans of patients with a heterozygous genetic deficiency were small, highly charged and lacked sialidase releasable N-acetylneuraminic acid. Structural studies indicate that the charge character of these aberrant N-glycan structures may result from the presence of mannose-6-phosphate residues. These residues might facilitate secretion of C1INH through an alternate lysosomal pathway, possibly serving as a compensatory mechanism to enhance plasma levels of C1INH in these deficient patients.

Keywords

Heterozygote, Glycosylation, Molecular Sequence Data, Neuraminidase, C1 esterase inhibitor, Complement C1 Inactivator Proteins, Polysaccharides, Reference Values, Protein Deficiency, C1 esterase inhibitor deficiency, Carbohydrate Conformation, Humans, Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase, Angioedema, Molecular Biology, Serpins, Hereditary angioedema, Electrophoresis, Capillary, N-Acetylneuraminic Acid, O-glycan, Carbohydrate Sequence, N-glycan, Molecular Medicine, Electrophoresis, Polyacrylamide Gel, Complement C1 Inhibitor Protein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
hybrid