Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genome Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genome Research
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Evry
Article . 2004
Data sources: HAL Evry
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2004
Data sources: HAL INRAE
Genome Research
Article . 2004 . Peer-reviewed
Data sources: Crossref
Genome Research
Article . 2004
versions View all 4 versions

Whole Genome Sequence Comparisons and “Full-Length” cDNA Sequences: A Combined Approach to Evaluate and Improve Arabidopsis Genome Annotation

Authors: Castelli, Vanina; Aury, Jean-Marc; Jaillon, Olivier; Wincker, Patrick; Clepet, Christian; Menard, Manuella; Cruaud, Corinne; +7 Authors

Whole Genome Sequence Comparisons and “Full-Length” cDNA Sequences: A Combined Approach to Evaluate and Improve Arabidopsis Genome Annotation

Abstract

To evaluate the existing annotation of the Arabidopsis genome further, we generated a collection of evolutionary conserved regions (ecores) between Arabidopsis and rice. The ecore analysis provides evidence that the gene catalog of Arabidopsis is not yet complete, and that a number of these annotations require re-examination. To improve the Arabidopsis genome annotation further, we used a novel “full-length” enriched cDNA collection prepared from several tissues. An additional 1931 genes were covered by new “full-length” cDNA sequences, raising the number of annotated genes with a corresponding “full-length” cDNA sequence to about 14,000. Detailed comparisons between these “full-length” cDNA sequences and annotated genes show that this resource is very helpful in determining the correct structure of genes, in particular, those not yet supported by “full-length” cDNAs. In addition, a total of 326 genomic regions not included previously in the Arabidopsis genome annotation were detected by this cDNA resource, providing clues for new gene discovery. Because, as expected, the two data sets only partially overlap, their combination produces very useful information for improving the Arabidopsis genome annotation.

Country
France
Keywords

580, 570, DNA, Complementary, DNA, Plant, Models, Genetic, [SDV]Life Sciences [q-bio], Arabidopsis, Oryza, Genomics, Genes, Plant, [SDV] Life Sciences [q-bio], Evolution, Molecular, Databases, Genetic, Conserved Sequence, Genome, Plant

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Top 1%
bronze