Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2008
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Descartes
Article . 2008
Data sources: HAL Descartes
Journal of Cell Science
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

Loss of galectin-3 impairs membrane polarisation of mouse enterocytes in vivo

Authors: Delacour, Delphine; Koch, Annett; Ackermann, Waltraud; Parco, Isabelle Eude-Le; Elsässer, Hans-Peter; Poirier, Francoise; Jacob, Ralf;

Loss of galectin-3 impairs membrane polarisation of mouse enterocytes in vivo

Abstract

Epithelial cells are characterised by distinct apical and basolateral membrane domains that are separated by tight junctions. Establishment and maintenance of this polarity depend on specific gene expression and protein targeting to their correct location. Our former studies, performed with renal epithelial MDCK cells, revealed a new function for galectin-3, a member of a conserved family of lectins. There, galectin-3 is required for intracellular sorting and correct targeting of non-raft-associated glycoproteins to the apical plasma membrane. In the present study, we found transport defects of the intestinal brush border hydrolases lactase-phlorizin hydrolase (LPH) and dipeptidylpeptidase IV (DPPIV) in galectin-3-null mutant mice. We could show that, in enterocytes of wild-type mice, both glycoproteins directly interact with galectin-3 and transit through non-raft-dependent apical transport platforms. Therefore, this genetic analysis provides definitive evidence for the involvement of galectin-3 in protein intracellular trafficking in vivo. Further investigations revealed that gal3-null enterocytes also exhibit striking cytoarchitecture defects, with the presence of numerous and regular protrusions located along basolateral membranes. Moreover, β-actin and villin, two characteristic markers of brush borders, become abnormally distributed along these atypical basolateral membranes in gal3–/– mice. Taken together, our results demonstrate that, in addition to a pivotal role in apical trafficking, galectin-3 also participates in epithelial morphogenesis in mouse enterocytes.

Keywords

Microscopy, Confocal, Galectin 3, Cell Membrane, Microfilament Proteins, Epithelial Cells, Mice, Inbred Strains, Actins, Mice, Mutant Strains, Mice, Enterocytes, Microscopy, Electron, Transmission, Microscopy, Fluorescence, [SDV.BDD] Life Sciences [q-bio]/Development Biology, Mutation, Animals, Immunoprecipitation, Lactase-Phlorizin Hydrolase, Dipeptidyl-Peptidases and Tripeptidyl-Peptidases, [SDV.BC] Life Sciences [q-bio]/Cellular Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%
bronze