Triple genetic variation in the HNF-4α gene is associated with early-onset type 2 diabetes mellitus in a philippino family
pmid: 15281001
Triple genetic variation in the HNF-4α gene is associated with early-onset type 2 diabetes mellitus in a philippino family
Maturity-onset diabetes of the young-type 1 (MODY1) is a form of monogenic type 2 diabetes mellitus (T2DM) with long-term complications due to mutations in the HNF-4alpha gene. The HNF-4alpha gene is involved in hepatic differentiation and expression of genes regulating glucose transport, glycolysis, and lipid metabolism. The abnormal glucose-stimulated insulin secretion in MODY1 subjects may be due to reduced glucose transport and glycolysis. To date, 14 mutations in the HNF-4alpha gene have been identified as a cause of either MODY1 or late-onset type 2 diabetes. So far, no screening has been performed in subjects from the Philippines. We recruited a Philippino family with autosomal dominant early-onset type 2 diabetes and screened the proband for mutations in the genes for HNF-1alpha, GCK, HNF-4alpha, IPF-1, HNF-6, and NGN3. We identified a new missense mutation in exon 5 (V199I) of the HNF-4alpha gene and 2 new single-nucleotide substitutions in intron 4, IVS4-nt4 (G --> A) and IVS4-nt20 (C --> T), all cosegregating with diabetes in the 3 affected available siblings. These variations were not present in 100 normal healthy subjects. Bioinformatic analysis suggests that these variations in the whole, and overall the IVS4-nt4 variation located at splicing site, may affect the splicing potential of intron 4. We have biochemically and clinically characterized the Philippine-1 family. We suggest that the V199I missense mutation located in the ligand binding/dimerization domain of HNF-4alpha contributes to type 2 diabetes in the Philippine-1 family. The intron variations may contribute susceptibility to diabetes.
- Harvard University United States
- Massachusetts General Hospital United States
- Howard Hughes Medical Institute United States
- Policlinico Tor Vergata Italy
- University of Rome Tor Vergata Italy
Adult, Male, Philippines, Mutation, Missense, DNA, Exons, Middle Aged, Phosphoproteins, Pedigree, DNA-Binding Proteins, Islets of Langerhans, Phenotype, Diabetes Mellitus, Type 2, Hepatocyte Nuclear Factor 4, Humans, Female, Age of Onset, Aged, Transcription Factors
Adult, Male, Philippines, Mutation, Missense, DNA, Exons, Middle Aged, Phosphoproteins, Pedigree, DNA-Binding Proteins, Islets of Langerhans, Phenotype, Diabetes Mellitus, Type 2, Hepatocyte Nuclear Factor 4, Humans, Female, Age of Onset, Aged, Transcription Factors
8 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
