Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DIGITAL.CSICarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Article . 2011 . Peer-reviewed
Data sources: DIGITAL.CSIC
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1999 . Peer-reviewed
Data sources: Crossref
Development
Article . 1999
versions View all 6 versions

Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum

Authors: Sussel, Lori; Marín Parra, Óscar; Kimura, Shioko; Rubenstein, J. L. R.;

Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum

Abstract

Abstract The telencephalon is organized into distinct longitudinal domains: the cerebral cortex and the basal ganglia. The basal ganglia primarily consists of a dorsal region (striatum) and a ventral region (pallidum). Within the telencephalon, the anlage of the pallidum expresses the Nkx2.1 homeobox gene. A mouse deficient in Nkx2.1 function does not form pallidal structures, lacks basal forebrain TrkA-positive neurons (probable cholinergic neurons) and has reduced numbers of cortical cells expressing GABA, DLX2 and calbindin that migrate from the pallidum through the striatum and into the cortex. We present evidence that these phenotypes result from a ventral-to-dorsal transformation of the pallidal primordium into a striatal-like anlage.

Country
Spain
Keywords

Telencephalon, Male, Regionalization, Mouse, Globus Pallidus, Mice, Cell Movement, Interneurons, Pregnancy, Animals, Hedgehog Proteins, Body Patterning, DNA Primers, Homeodomain Proteins, Mice, Knockout, Base Sequence, Genes, Homeobox, Gene Expression Regulation, Developmental, Nuclear Proteins, Corpus Striatum, Mice, Mutant Strains, Nkx2.1, Phenotype, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    817
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 98
  • 98
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
817
Top 1%
Top 1%
Top 1%
98
Green