Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Cellul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Endocrinology
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Involvement of insulin-like growth factor binding protein-3 in peroxisome proliferator-activated receptor gamma-mediated inhibition of breast cancer cell growth

Authors: Cindy K. Pon; Sue M. Firth; Robert C. Baxter;

Involvement of insulin-like growth factor binding protein-3 in peroxisome proliferator-activated receptor gamma-mediated inhibition of breast cancer cell growth

Abstract

We have previously reported that insulin-like growth factor binding protein-3 (IGFBP-3), a protein with dichotomous effects on both cell proliferation and cell survival, interacts with peroxisome proliferator-activated receptor gamma (PPARγ) and inhibits adipogenic PPARγ signaling. We now show that IGFBP-3 and PPARγ interact in breast cancer cells, through amino- and carboxyl-terminal residues of IGFBP-3. IGFBP-3 and the PPARγ ligands, rosiglitazone or 15-deoxy-Δ(12,14)-prostaglandin J2, separately inhibited the proliferation of MCF-7, MDA-MB-231 and MDA-MB-468 breast cancer cells. However, growth inhibition by IGFBP-3 and PPARγ ligand combined was greater than by either alone. Two IGFBP-3 mutants with reduced PPARγ binding caused no growth inhibition when used alone and abolished the inhibitory effect of rosiglitazone when used in combination with PPARγ ligand. Cell growth inhibition by PPARγ ligands was substantially blocked by IGFBP-3 siRNA and restored by exogenous IGFBP-3. We conclude that the interaction between IGFBP-3 and PPARγ is important for the growth-inhibitory effect of PPARγ ligands in human breast cancer cells, suggesting that IGFBP-3 expression by breast tumors may regulate their sensitivity toward PPARγ ligands.

Keywords

Breast Neoplasms, Neoplasm Proteins, Gene Expression Regulation, Neoplastic, PPAR gamma, Rosiglitazone, Insulin-Like Growth Factor Binding Protein 3, Cell Line, Tumor, Mutation, Humans, Hypoglycemic Agents, Female, Thiazolidinediones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%