Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Genetics
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cancer Genetics
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Cancer Genetics
Article . 2012
versions View all 2 versions

Dystrophin and dysferlin double mutant mice: a novel model for rhabdomyosarcoma

Authors: Hosur, Vishnu; Kavirayani, Anoop; Riefler, Jennifer; Carney, Lisa M B; Lyons, Bonnie; Gott, Bruce; Cox, Gregory A; +1 Authors

Dystrophin and dysferlin double mutant mice: a novel model for rhabdomyosarcoma

Abstract

Although researchers have yet to establish a link between muscular dystrophy (MD) and sarcomas in human patients, literature suggests that the MD genes dystrophin and dysferlin act as tumor suppressor genes in mouse models of MD. For instance, dystrophin-deficient mdx and dysferlin-deficient A/J mice, models of human Duchenne MD and limb-girdle MD type 2B, respectively, develop mixed sarcomas with variable penetrance and latency. To further establish the correlation between MD and sarcoma development, and to test whether a combined deletion of dystrophin and dysferlin exacerbates MD and augments the incidence of sarcomas, we generated dystrophin and dysferlin double mutant mice (STOCK-Dysf(prmd)Dmd(mdx-5Cv)). Not surprisingly, the double mutant mice develop severe MD symptoms and, moreover, develop rhabdomyosarcoma (RMS) at an average age of 12 months, with an incidence of >90%. Histological and immunohistochemical analyses, using a panel of antibodies against skeletal muscle cell proteins, electron microscopy, cytogenetics, and molecular analysis reveal that the double mutant mice develop RMS. The present finding bolsters the correlation between MD and sarcomas, and provides a model not only to examine the cellular origins but also to identify mechanisms and signal transduction pathways triggering development of RMS.

Related Organizations
Keywords

Genetic Markers, Male, Spectral Karyotyping, Life Sciences, 610, 500, Membrane Proteins, Muscular Dystrophy, Animal, Dystrophin, Mice, Inbred C57BL, Disease Models, Animal, Mice, Mutation, Rhabdomyosarcoma, Medicine and Health Sciences, Animals, Female, Muscle, Skeletal, Dysferlin, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
bronze