Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Knowledge-Based Syst...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Knowledge-Based Systems
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY
Data sources: Datacite
versions View all 6 versions

Look back, look around: A systematic analysis of effective predictors for new outlinks in focused Web crawling

A systematic analysis of effective predictors for new outlinks in focused Web crawling
Authors: Thi Kim Nhung Dang; Doina Bucur; Berk Atil; Guillaume Pitel; Frank Ruis; Hamidreza Kadkhodaei; Nelly Litvak;

Look back, look around: A systematic analysis of effective predictors for new outlinks in focused Web crawling

Abstract

Small and medium enterprises rely on detailed Web analytics to be informed about their market and competition. Focused crawlers meet this demand by crawling and indexing specific parts of the Web. Critically, a focused crawler must quickly find new pages that have not yet been indexed. Since a new page can be discovered only by following a new outlink, predicting new outlinks is very relevant in practice. In the literature, many feature designs have been proposed for predicting changes in the Web. In this work we provide a structured analysis of this problem, using new outlinks as our running prediction target. Specifically, we unify earlier feature designs in a taxonomic arrangement of features along two dimensions: static versus dynamic features, and features of a page versus features of the network around it. Within this taxonomy, complemented by our new (mainly, dynamic network) features, we identify best predictors for new outlinks. Our main conclusion is that most informative features are the recent history of new outlinks on a page itself, and of its content-related pages. Hence, we propose a new 'look back, look around' (LBLA) model, that uses only these features. With the obtained predictions, we design a number of scoring functions to guide a focused crawler to pages with most new outlinks, and compare their performance. The LBLA approach proved extremely effective, outperforming other models including those that use a most complete set of features. One of the learners we use, is the recent NGBoost method that assumes a Poisson distribution for the number of new outlinks on a page, and learns its parameters. This connects the two so far unrelated avenues in the literature: predictions based on features of a page, and those based on probabilistic modelling. All experiments were carried out on an original dataset, made available by a commercial focused crawler.

23 pages, 15 figures, 4 tables, uses arxiv.sty, added new title, heuristic features and their results added, figures 7, 14, and 15 updated, accepted version

Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Web mining, Focused crawling, Web change prediction, cs.LG, UT-Hybrid-D, SDG 8 - Decent Work and Economic Growth, SDG 9 – Industrie, innovatie en infrastructuur, Statistical models, Machine Learning (cs.LG), Probabilistic regression, SDG 8 – Fatsoenlijk werk en economische groei, and Infrastructure, Web search engines, Innovation, SDG 9 - Industry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
hybrid