Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Plant Scie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trends in Plant Science
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Proteasomal recognition of ubiquitylated substrates

Authors: Hongyong, Fu; Ya-Ling, Lin; A S, Fatimababy;

Proteasomal recognition of ubiquitylated substrates

Abstract

Ubiquitin/26S proteasome-mediated proteolysis controls the half-life of numerous critical regulatory proteins and is an intimate regulatory component for nearly all aspects of cellular processes. In addition to ubiquitin conjugation, an additional level of substrate specificity is regulated at the step of proteasomal recognition of ubiquitylated substrates, which serves as an important mechanistic and regulatory component to connect the substrate from the conjugation machinery to the 26S proteasome. In this review, we discuss current knowledge and future challenges relevant to understanding the mechanism, regulation, functions and substrate specificity of proteasomal recognition mediated by a multitude of ubiquitin receptors. The mechanistic details of major recognition pathways for ubiquitylated substrates are clearly divergent within and across species, which implies functional differentiation.

Keywords

Proteasome Endopeptidase Complex, Ubiquitination, Animals, Humans, Protein Binding, Signal Transduction, Substrate Specificity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%