Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2013
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2013 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Spatiotemporal control of Cindr at ring canals during incomplete cytokinesis in the Drosophila male germline

Authors: Eikenes, Åsmund H.; Brech, Andreas; Stenmark, Harald; Haglund, Kaisa;

Spatiotemporal control of Cindr at ring canals during incomplete cytokinesis in the Drosophila male germline

Abstract

During male and female gametogenesis in species ranging from insects to mammals, germ cell cyst formation by incomplete cytokinesis involves the stabilization of cleavage furrows and the formation of stable intercellular bridges called ring canals. Accurate regulation of incomplete cytokinesis is required for both female and male fertility in Drosophila melanogaster. Nevertheless, the molecular mechanisms controlling complete versus incomplete cytokinesis are largely unknown. Here, we show that the scaffold protein Cindr is a novel component of both mitotic and meiotic ring canals during Drosophila spermatogenesis. Strikingly, unlike other male germline ring canal components, including Anillin and Pavarotti, Cindr and contractile ring F-actin dissociate from mitotic ring canals and translocate to the fusome upon completion of the mitotic germ cell divisions. We provide evidence that the loss of Cindr from mitotic ring canals is coordinated by signals that mediate the transition from germ cell mitosis to differentiation. Interestingly, Cindr loss from ring canals coincides with completion of the mitotic germ cell divisions in both Drosophila females and males, thus marking a common step of gametogenesis. We also show that Cindr co-localizes with Anillin at mitotic and meiotic ring canals and is recruited to the contractile ring by Anillin during male germ cell meiotic cytokinesis. Taken together, our analyses reveal a key step of incomplete cytokinesis at the endpoint of the mitotic germ cell divisions in D. melanogaster.

Related Organizations
Keywords

Male, Cindr, Ring canal, Mitosis, Models, Biological, Cell Fusion, Contractile Proteins, Spermatocytes, Testis, Animals, Drosophila Proteins, Drosophila spermatogenesis, Spermatogenesis, Molecular Biology, Cytokinesis, Cell Membrane, Microfilament Proteins, Cell Differentiation, Cell Biology, Meiosis, Protein Transport, Drosophila melanogaster, Germ Cells, Female, Microtubule-Associated Proteins, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%
hybrid