Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of Botanyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Annals of Botany
Article
Data sources: UnpayWall
Annals of Botany
Article . 2002 . Peer-reviewed
Data sources: Crossref
Annals of Botany
Article . 2002
versions View all 2 versions

Classification of Genes Differentially Expressed during Water-deficit Stress in Arabidopsis thaliana: an Analysis using Microarray and Differential Expression Data

Authors: Elizabeth A, Bray;

Classification of Genes Differentially Expressed during Water-deficit Stress in Arabidopsis thaliana: an Analysis using Microarray and Differential Expression Data

Abstract

Many changes in gene expression occur in response to water-deficit stress. A challenge is to determine which changes support plant adaptation to conditions of reduced soil water content and which occur in response to lesions in metabolic and cellular functions. Microarray methods are being employed to catalogue all of the changes in gene expression that occur in response to specific water-deficit conditions. Although these methods do not measure the amount or activities of specific proteins that function in the water-deficit response, they do target specific biochemical and cellular events that should be detailed in further work. Potential functions of approx. 130 genes of Arabidopsis thaliana that have been shown to be up-regulated are tabulated here. These point to signalling events, detoxification and other functions involved in the cellular response to water-deficit stress. As microarray techniques are refined, plant stress biologists will be able to characterize changes in gene expression within the whole genome in specific organs and tissues subjected to different levels of water-deficit stress.

Related Organizations
Keywords

Transcription, Genetic, Arabidopsis, Down-Regulation, Water, Biological Transport, Cell Communication, Genes, Plant, Adaptation, Physiological, Up-Regulation, Gene Expression Regulation, Plant, Osmotic Pressure, Stress, Mechanical, Algorithms, Oligonucleotide Array Sequence Analysis, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    191
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
191
Top 10%
Top 1%
Top 10%
bronze