Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cancer Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cancer Research
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Down-Regulation of Class II Phosphoinositide 3-Kinase α Expression below a Critical Threshold Induces Apoptotic Cell Death

Authors: Winfried, Elis; Ellen, Triantafellow; Natalie M, Wolters; Katie R, Sian; Giordano, Caponigro; Jason, Borawski; L Alex, Gaither; +3 Authors

Down-Regulation of Class II Phosphoinositide 3-Kinase α Expression below a Critical Threshold Induces Apoptotic Cell Death

Abstract

Abstract Members of the phosphoinositide 3-kinase (PI3K) family collectively control multiple cellular responses, including proliferation, growth, chemotaxis, and survival. These diverse effects can partly be attributed to the broad range of downstream effectors being regulated by the products of these lipid kinases, the 3′-phosphoinositides. However, an additional layer of complexity is introduced by the existence of multiple PI3K enzyme isoforms. Much has been learned over the last years on the roles of the classes I and III PI3K members in cellular signaling, but little is known about the isoform-specific tasks done by the class II PI3Ks (C2α, β, and γ). In this study, we used quantitative reverse transcription–PCR and RNA interference in mammalian cells to gain further insight into the function of these lesser studied PI3K enzymes. We find that PI3K-C2α, but not PI3K-C2β, has an important role in controlling cell survival and by using a panel of RNA interference reagents, we were able to determine a critical threshold of PI3K-C2α mRNA levels, below which the apoptotic program is switched on, via the intrinsic cell death pathway. In addition, knockdown of PI3K-C2α to levels that by themselves do not induce apoptosis sensitize cells to the anticancer agent Taxol (paclitaxel). Lastly, we report that lowering the levels of PI3K-C2α in a number of cancer cell lines reduces their proliferation and cell viability, arguing that PI3K inhibitors targeting not only the class Iα isoform but also class IIα may contribute to an effective anticancer strategy. (Mol Cancer Res 2008;6(4):614–23)

Related Organizations
Keywords

Time Factors, Cell Survival, Gene Expression Profiling, Down-Regulation, Apoptosis, Isoenzymes, Phosphatidylinositol 3-Kinases, Cell Line, Tumor, Humans, RNA Interference, RNA, Small Interfering, Class II Phosphatidylinositol 3-Kinases, HeLa Cells, Phosphoinositide-3 Kinase Inhibitors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research