AtVPS45 Complex Formation at thetrans-Golgi Network
AtVPS45 Complex Formation at thetrans-Golgi Network
The Sec1p family of proteins are thought to be involved in the regulation of vesicle fusion reactions through interaction with t-SNAREs (target soluble N-ethylmaleimide–sensitive factor attachment protein receptors) at the target membrane. AtVPS45 is a member of this family from Arabidopsis thaliana that we now demonstrate to be present on the trans-Golgi network (TGN), where it colocalizes with the vacuolar cargo receptor AtELP. Unlike yeast Vps45p, AtVPS45 does not interact with, or colocalize with, the prevacuolar t-SNARE AtPEP12. Instead, AtVPS45 interacts with two t-SNAREs, AtTLG2a and AtTLG2b, that show similarity to the yeast t-SNARE Tlg2p. AtTLG2a and -b each colocalize with AtVPS45 at the TGN; however, AtTLG2a is in a different region of the TGN than AtTLG2b by immunogold electron microscopy. Therefore, we propose that complexes containing AtVPS45 and either AtTLG2a or -b define functional subdomains of the TGN and may be required for different trafficking events. Among other Arabidopsis SNAREs, AtVPS45 antibodies preferentially coprecipitate AtVTI1b over the closely related isoform AtVTI1a, implying that AtVTI1a and AtVTI1b also have distinct functions within the cell. These data point to a functional complexity within the plant secretory pathway, where proteins encoded by gene families have specialized functions, rather than functional redundancy.
- Michigan State University United States
Binding Sites, Saccharomyces cerevisiae Proteins, Arabidopsis Proteins, Plant Extracts, Qa-SNARE Proteins, Arabidopsis, Vesicular Transport Proteins, Golgi Apparatus, Membrane Proteins, Membrane Transport Proteins, Qb-SNARE Proteins, Plant Roots, Animals, Rabbits, Carrier Proteins, SNARE Proteins
Binding Sites, Saccharomyces cerevisiae Proteins, Arabidopsis Proteins, Plant Extracts, Qa-SNARE Proteins, Arabidopsis, Vesicular Transport Proteins, Golgi Apparatus, Membrane Proteins, Membrane Transport Proteins, Qb-SNARE Proteins, Plant Roots, Animals, Rabbits, Carrier Proteins, SNARE Proteins
29 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).147 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
