Cloning and Characterization of a Novel Class II Phosphoinositide 3-Kinase Containing C2 Domain
pmid: 9514948
Cloning and Characterization of a Novel Class II Phosphoinositide 3-Kinase Containing C2 Domain
Phosphoinositide 3-kinases (PI3Ks) have been shown to play critical roles in cell growth, differentiation, survival, and vesicular transport. Class II PI3Ks have been recently identified in mouse and human (PI3K-C2 alpha/m-p170/m-cpk and HsC2-PI3K) and in Drosophila (PI3K 68D/cpk) which contain C2 domain at the C-terminus. However, their physiological function is largely unknown. We report here cloning and characterization of murine PI3K-C2 gamma, a novel class II PI3K. The catalytic domain as well as C2 domain are highly conserved in the Class II PI3K family, while the N-terminal regions of these proteins share little similarity. Unlike other Class II PI3Ks, PI3K-C2 gamma exclusively expressed in the liver, and a N-terminal truncated form was found in lung and a certain hematopoietic cell line. Specific antiserum against PI3K-C2 gamma precipitated PI3K activity from the membrane fraction of mouse liver but not from heart. Recombinant PI3K-C2 gamma exhibited a restricted lipid substrate specificity; it phosphorylated phosphatidylinositol (PtdIns) and PtdIns4P but not PtdIns(4,5)P2. Deletion mutations revealed that both the N-terminal region and the C2 domain were critical for enzymatic activity. The murine PI3K-C2 gamma gene locus was mapped to the distal region of mouse chromosome 6 in a region of homology with human chromosome 12p, which is distinct from the position of HsC2-PI3K. Cloning and biochemical characterization of the third member of class II PI3Ks provide a new insight into the function of this subfamily of PI3Ks.
- Kurume University Japan
DNA, Complementary, Base Sequence, Molecular Sequence Data, Chromosome Mapping, In Vitro Techniques, Substrate Specificity, Mice, Phosphatidylinositol 3-Kinases, Phosphatidylinositol Phosphates, Animals, Humans, Tissue Distribution, Amino Acid Sequence, Cloning, Molecular, Conserved Sequence, Sequence Deletion
DNA, Complementary, Base Sequence, Molecular Sequence Data, Chromosome Mapping, In Vitro Techniques, Substrate Specificity, Mice, Phosphatidylinositol 3-Kinases, Phosphatidylinositol Phosphates, Animals, Humans, Tissue Distribution, Amino Acid Sequence, Cloning, Molecular, Conserved Sequence, Sequence Deletion
40 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).69 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
