Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2010 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions

TNF, but Not IL-6 and IL-17, Is Crucial for the Development of T Cell-Independent Psoriasis-Like Dermatitis in Il1rn−/− Mice

Authors: Mayumi Komine; Akihiko Asahina; Susumu Nakae; Reiko Horai; Shigeru Kakuta; Harumichi Ishigame; Akiko Nakajima; +3 Authors

TNF, but Not IL-6 and IL-17, Is Crucial for the Development of T Cell-Independent Psoriasis-Like Dermatitis in Il1rn−/− Mice

Abstract

Abstract IL-1 is a proinflammatory cytokine consisting of two molecular species, IL-1α and IL-1β, and IL-1R antagonist (gene: Il1rn) is the endogenous suppressor. Il1rn−/− mice spontaneously develop autoimmune diseases, such as arthritis and aortitis, and a dermatitis that histologically resembles human psoriasis. The pathogenic mechanisms underlying this dermatitis, however, remain to be elucidated. In this study, we demonstrated that the production of inflammatory cytokines and chemokines was enhanced at the site of inflammation. The development of dermatitis was completely suppressed in Tnfsf1a−/− but not in Il6−/− mice, similar to that observed in arthritis and aortitis. However, IL-17 deficiency did not affect the development of dermatitis at all, in clear contrast to that of arthritis and aortitis. Different from arthritis and aortitis, adoptive transfer of Il1rn−/− T cells did not induce dermatitis in the recipient SCID mice and skin lesions developed in Il1rn−/− SCID mice, indicating that T cells are not involved in the development of skin lesions. In support for this, bone marrow cell transplantation experiments showed that TNF produced by skin residential cells, but not bone marrow cell-derived cells, was important for the development of dermatitis. Furthermore, we showed that IL-1 directly enhanced TNF and chemokine expression in keratinocytes. These observations suggest that excess IL-1 signaling directly activates keratinocytes to produce TNF and chemokines, resulting in the development of psoriasis-like skin lesions without the involvement of autoimmunity in Il1rn−/− mice.

Keywords

Mice, Knockout, Mice, Inbred BALB C, Interleukin-6, Tumor Necrosis Factor-alpha, Interleukin-17, Mice, SCID, Dermatitis, Contact, Interleukin 1 Receptor Antagonist Protein, Mice, T-Lymphocyte Subsets, Animals, Psoriasis, Female, Inflammation Mediators, Skin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
bronze