Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Journal
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Journal
Article . 2014
versions View all 2 versions

Genome‐wide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice

Authors: Amarjeet, Singh; Poonam, Kanwar; Akhilesh K, Yadav; Manali, Mishra; Saroj K, Jha; Vinay, Baranwal; Amita, Pandey; +3 Authors

Genome‐wide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice

Abstract

Ca2+ homeostasis is required to maintain a delicate balance of cytosolic Ca2+ during normal and adverse growth conditions. Various Ca2+ transporters actively participate to maintain this delicate balance especially during abiotic stresses and developmental events in plants. In this study, we present a genome‐wide account, detailing expression profiles, subcellular localization and functional analysis of rice Ca2+ transport elements. Exhaustive in silico data mining and analysis resulted in the identification of 81 Ca2+ transport element genes, which belong to various groups such as Ca2+‐ATPases (pumps), exchangers, channels, glutamate receptor homologs and annexins. Phylogenetic analysis revealed that different Ca2+ transporters are evolutionarily conserved across different plant species. Comprehensive expression analysis by gene chip microarray and quantitative RT‐PCR revealed that a substantial proportion of Ca2+ transporter genes were expressed differentially under abiotic stresses (salt, cold and drought) and reproductive developmental stages (panicle and seed) in rice. These findings suggest a possible role of rice Ca2+ transporters in abiotic stress and development triggered signaling pathways. Subcellular localization of Ca2+ transporters from different groups in Nicotiana benthamiana revealed their variable localization to different compartments, which could be their possible sites of action. Complementation of Ca2+ transport activity of K616 yeast mutant by Ca2+‐ATPase OsACA7 and involvement in salt tolerance verified its functional behavior. This study will encourage detailed characterization of potential candidate Ca2+ transporters for their functional role in planta.

Keywords

Salinity, Gene Expression Profiling, Recombinant Fusion Proteins, Green Fluorescent Proteins, Gene Expression Regulation, Developmental, Biological Transport, Oryza, Calcium-Transporting ATPases, Plants, Genetically Modified, Droughts, Cold Temperature, Allostasis, Gene Expression Regulation, Plant, Gene Duplication, Seeds, Calcium, Inflorescence, Phylogeny, Genome-Wide Association Study, Plant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 1%
Top 10%
Top 10%
bronze