Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuroscience Lettersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience Letters
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
HKU Scholars Hub
Article . 2012
Data sources: HKU Scholars Hub
versions View all 3 versions

Regional cerebral blood volume reduction in transgenic mutant APP (V717F, K670N/M671L) mice

Authors: Tang, H; Wu, EX; Asai, T; Yan, SD;

Regional cerebral blood volume reduction in transgenic mutant APP (V717F, K670N/M671L) mice

Abstract

Recent advance in nuclear magnetic resonance (NMR) microimaging has enabled in vivo cerebral blood volume (CBV) mapping with high spatial resolution. Using an intravascular susceptibility contrast agent and T(2)-weighted magnetic resonance imaging (MRI) on a 9.4T NMR microimager, the regional CBV was measured in mice as the transverse relaxation increase induced by the contrast agent. CBV maps in an Alzheimer's disease mouse model at resting state were obtained and examined. Four-month-old male transgenic mutant APP (V717F, K670N/M671L) mice (N = 10) and littermate wild-type controls (N = 12) were used. Regional analysis of the multi-slice CBV maps revealed statistically significant CBV reductions among the APP mice in cerebral cortex (-9.29%, P = 0.0002), hippocampus (-4.22%, P = 0.02), and thalamus (-5.21%, P = 0.03), indicating an early change of microvasculature in these selected regions. No significant difference was found in olfactory bulb, pons, midbrain, superior colliculus, medulla, and cerebellum.

Related Organizations
Keywords

Male, Blood Volume, Brain, Contrast Media, Mice, Transgenic, Brain - Anatomy & Histology - Blood Supply, Magnetic Resonance Imaging, Transgenic, Mice, Mutant Strains, Mutant Strains, Mice, Blood Volume - Genetics, Magnetic Resonance Imaging - Methods, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Average
Top 10%
Top 10%