Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEMS Yeast Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEMS Yeast Research
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Quantification of oxidative stress phenotypes based on high-throughput growth profiling of protein kinase and phosphatase knockouts

Authors: Altıntaş, Ali; Martini, Jacopo; Mortensen, Uffe Hasbro; Workman, Christopher T.;

Quantification of oxidative stress phenotypes based on high-throughput growth profiling of protein kinase and phosphatase knockouts

Abstract

Cellular responses to oxidative stress are important for restoring redox balance and ensuring cell survival. Genetic defects in response factors can lead to impaired response to oxidative damage and contribute to disease and aging. In single cell organisms, such as yeasts, the integrity of the oxidative stress response can be observed through its influences on growth characteristics. In this study, we investigated the time-dependent batch growth effects as a function of oxidative stress levels in protein kinase and phosphatase deletion backgrounds of Saccharomyces cerevisiae. In total, 41 different protein kinases and phosphatase mutants were selected for their known activities in oxidative stress or other stress response pathways and were investigated for their dosage-dependent response to hydrogen peroxide. Detailed growth profiles were analyzed after the induction of stress for growth rate, lag time duration and growth efficiency, and by a novel method to identify stress-induced diauxic shift delay. This approach extracts more phenotypic information than traditional plate-based methods due to the assessment of time dynamics in the time scale of minutes. With this approach, we were able to identify surprisingly diverse sensitivity and resistance patterns as a function of gene knockout.

Keywords

Saccharomyces cerevisiae Proteins, Hydrogen Peroxide, Saccharomyces cerevisiae, Protein kinase, Phosphoric Monoester Hydrolases, Gene Knockout Techniques, Oxidative Stress, Phenotype, Protein phosphatase, Oxidative stress, Fitness, Systems biology, Protein Kinases, Growth physiology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Green
bronze