<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Drosophila neuroblasts as a new model for the study of stem cell self-renewal and tumour formation

Drosophila neuroblasts as a new model for the study of stem cell self-renewal and tumour formation
Drosophila larval brain stem cells (neuroblasts) have emerged as an important model for the study of stem cell asymmetric division and the mechanisms underlying the transformation of neural stem cells into tumour-forming cancer stem cells. Each Drosophila neuroblast divides asymmetrically to produce a larger daughter cell that retains neuroblast identity, and a smaller daughter cell that is committed to undergo differentiation. Neuroblast self-renewal and differentiation are tightly controlled by a set of intrinsic factors that regulate ACD (asymmetric cell division). Any disruption of these two processes may deleteriously affect the delicate balance between neuroblast self-renewal and progenitor cell fate specification and differentiation, causing neuroblast overgrowth and ultimately lead to tumour formation in the fly. In this review, we discuss the mechanisms underlying Drosophila neural stem cell self-renewal and differentiation. Furthermore, we highlight emerging evidence in support of the notion that defects in ACD in mammalian systems, which may play significant roles in the series of pathogenic events leading to the development of brain cancers.
- National University of Singapore Libraries Singapore
- National University of Singapore Singapore
570, Carcinogenesis, brain, Review Article, neural stem cell, larva, Neural Stem Cells, Animals, Humans, animal, human, Brain Neoplasms, Brain, Cell Differentiation, 540, cell differentiation, Larva, physiology, pathology, Drosophila, carcinogenesis, brain tumor
570, Carcinogenesis, brain, Review Article, neural stem cell, larva, Neural Stem Cells, Animals, Humans, animal, human, Brain Neoplasms, Brain, Cell Differentiation, 540, cell differentiation, Larva, physiology, pathology, Drosophila, carcinogenesis, brain tumor
199 Research products, page 1 of 20
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average