Density of Common Complex Ocular Traits in the Aging Eye: Analysis of Secondary Traits in Genome-Wide Association Studies
Density of Common Complex Ocular Traits in the Aging Eye: Analysis of Secondary Traits in Genome-Wide Association Studies
Genetic association studies are identifying genetic risks for common complex ocular traits such as age-related macular degeneration (AMD). The subjects used for discovery of these loci have been largely from clinic-based, case-control studies. Typically, only the primary phenotype (e.g., AMD) being studied is systematically documented and other complex traits (e.g., affecting the eye) are largely ignored. The purpose of this study was to characterize these other or secondary complex ocular traits present in the cases and controls of clinic-based studies being used for genetic study of AMD. The records of 100 consecutive new patients (of any diagnosis) age 60 or older for which all traits affecting the eye had been recorded systematically were reviewed. The average patient had 3.5 distinct diagnoses. A subset of 10 complex traits was selected for further study because they were common and could be reliably diagnosed. The density of these 10 complex ocular traits increased by 0.017 log-traits/year (P = 0.03), ranging from a predicted 2.74 at age 60 to 4.45 at age 90. Trait-trait association was observed only between AMD and primary vitreomacular traction (P = 0.0009). Only 1% of subjects age 60 or older had no common complex traits affecting the eye. Extrapolations suggested that a study of 2000 similar subjects would have sufficient power to detect genetic association with an odds ratio of 2.0 or less for 4 of these 10 traits. In conclusion, the high prevalence of complex traits affecting the aging eye and the inherent biases in referral patterns leads to the potential for confounding by undocumented secondary traits within case-control studies. In addition to the primary trait, other common ocular phenotypes should be systematically documented in genetic association studies so that adjustments for potential trait-trait associations and other bias can be made and genetic risk variants identified in secondary analyses.
- Mayo Clinic United States
Aged, 80 and over, Aging, Genome, Models, Genetic, Science, Q, R, Middle Aged, Eye, Macular Degeneration, Phenotype, Medicine, Humans, Research Article, Aged, Retrospective Studies
Aged, 80 and over, Aging, Genome, Models, Genetic, Science, Q, R, Middle Aged, Eye, Macular Degeneration, Phenotype, Medicine, Humans, Research Article, Aged, Retrospective Studies
16 Research products, page 1 of 2
- 2010IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
