Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Partial loss of GATA factor Pannier impairs adult heart function in Drosophila

Authors: Rolf Bodmer; Li Qian;

Partial loss of GATA factor Pannier impairs adult heart function in Drosophila

Abstract

The GATA transcription factor encoded by pannier (pnr) is a critical regulator of heart progenitor formation in Drosophila. Mutations in GATA4, the mammalian homolog of pnr, have also been implicated in causing human cardiac disease in a haploinsufficient manner. Mouse models of Gata4 loss-of-function and gain-of-function studies underscored the importance of Gata4 in regulating cardiac progenitor cells specification and differentiation. However, it is not known whether pnr/Gata4 is directly involved in establishing and maintaining adult heart physiology because of the lethality associated with defective heart function and redundancy among various GATA factors in vertebrates. Here, we took advantage of the Drosophila heart model to examine the function of pnr in adult heart physiology. We found that pnr heterozygous mutants result in defective cardiac performance in response to electrical pacing of the heart as well as in elevated arrhythmias. Adult-specific disruption of pnr function using a dominant-negative form pnrEnR revealed a cardiac autonomous requirement of pnr in regulating heart physiology. Moreover, we identified Tbx20/neuromancer (nmr) as a potential downstream mediator of pnr in regulating cardiac performance and rhythm regularity, based on the observation that overexpression of nmr genes, but not of tinman, partially rescues the adult defects in pnr mutants. We conclude that pnr is not only essential for early cardiac progenitor formation, along with tinman and T-box factors, but also plays an important role in establishing and/or maintaining proper heart function, which is partially through another key regulator Tbx20/nmr.

Keywords

Male, Heart Diseases, Myocardium, Heart, Disease Models, Animal, Animals, Drosophila Proteins, Humans, Drosophila, Female, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
bronze