Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neurobiol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neurobiology
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neurobiology
Article . 1998 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 2 versions

Identification of Reggie-1 and Reggie-2 as plasmamembrane-associated proteins which cocluster with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons

Authors: D M, Lang; S, Lommel; M, Jung; R, Ankerhold; B, Petrausch; U, Laessing; M F, Wiechers; +2 Authors

Identification of Reggie-1 and Reggie-2 as plasmamembrane-associated proteins which cocluster with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons

Abstract

Neurons are believed to possess plasmalemmal microdomains and proteins analogous to the caveolae and caveolin of nonneuronal cells. Caveolae are plasmalemmal invaginations where activated glycosyl-phosphatidylinositol (GPI)-anchored proteins preferentially assemble and where transmembrane signaling may occur. Molecular cloning of rat reggie-1 and -2 (80% identical to goldfish reggie proteins) shows that reggie-2 is practically identical to mouse flotillin-1. Flotillin-1 and epidermal surface antigen (ESA) (flotillin-2) are suggested to represent possible membrane proteins in caveolae. Rat reggie-1 is 99% homologous to ESA in overlapping sequences but has a 49-amino-acid N-terminus not present in ESA. Antibodies (ABs) which recognize reggie-1 or -2 reveal that both proteins cluster at the plasmamembrane and occur in micropatches in neurons [dorsal root ganglia (DRGs), retinal ganglion, and PC-12 cells] and in nonneuronal cells. In neurons, reggie micropatches occur along the axon and in lamellipodia and filopodia of growth cones, but they do not occur in caveolae. By quantitative electronmicroscopic analysis we demonstrate the absence of caveolae in (anti-caveolin negative) neurons and show anti-reggie-1 immunogold-labeled clusters at the plasmamembrane of DRGs. When ABs against the GPI-anchored cell adhesion molecules (CAMs) F3 and Thy-1 are applied to live DRGs, the GPI-linked CAMs sequester into micropatches. Double immunofluorescence shows a colocalization of the CAMs with micropatches of anti-reggie antibodies. Thus, reggie-1 and reggie-2 identify sites where activated GPI-linked CAMs preferentially accumulate and which may represent noncaveolar micropatches (domains).

Related Organizations
Keywords

Fish Proteins, Neurons, Glycosylphosphatidylinositols, Caveolin 1, Cell Membrane, Growth Cones, Molecular Sequence Data, Membrane Proteins, Nerve Tissue Proteins, Caveolins, Immunohistochemistry, Mice, Astrocytes, Ganglia, Spinal, Goldfish, Antigens, Surface, Animals, Amino Acid Sequence, Cloning, Molecular, Cell Adhesion Molecules

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    223
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
223
Top 10%
Top 1%
Top 10%
hybrid
Related to Research communities