Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neurochemical Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurochemical Research
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Enhanced Glutathione Efflux from Astrocytes in Culture by Low Extracellular Ca2+ and Curcumin

Authors: Malin H, Stridh; Fernando, Correa; Christina, Nodin; Stephen G, Weber; Fredrik, Blomstrand; Michael, Nilsson; Mats, Sandberg;

Enhanced Glutathione Efflux from Astrocytes in Culture by Low Extracellular Ca2+ and Curcumin

Abstract

Efflux of glutathione (GSH) from astrocytes has been suggested as a key factor for neuroprotection by astrocytes. Here we evaluated if the Nrf2 activator curcumin affects basal and stimulated (Ca(2+) omission) GSH efflux from cultures of astroglial cells. Stimulated efflux of GSH was observed at medium concentration of 0, 0.1 mM Ca(2+), but not at 0.2 or 0.3 mM Ca(2+). Astroglia treated with 30 microM curcumin increased the cellular content of GSH in parallel with elevated basal and stimulated efflux. Conversely treatment with buthionine sulfoximine lowered efflux of GSH. The efflux stimulated by Ca(2+)- omission was not affected by the P2X7-receptor antagonist Blue Brilliant G (100 nM) or the pannexin mimetic/blocking peptide (10)Panx1 but inhibited by the gap junction blocker carbenoxolone (100 microM) and a hemichannel blocker Gap26 (300 microM). RNAi directed against Nrf2 partly inhibited the effect of curcumin. The results show that elevated cellular GSH by curcumin treatment enhance efflux from astroglial cells, a process which appear to be a prerequisite for astroglial mediated neuroprotection.

Related Organizations
Keywords

Curcumin, NF-E2-Related Factor 2, Glutamate-Cysteine Ligase, Glutathione, Hippocampus, Rats, Rats, Sprague-Dawley, Animals, Newborn, Astrocytes, Gene Knockdown Techniques, Animals, Calcium, RNA, Small Interfering, Extracellular Space, Buthionine Sulfoximine, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
bronze