Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Tumor Necrosis Factor-α Can Provoke Cleavage and Activation of Sterol Regulatory Element-binding Protein in Ethanol-exposed Cells via a Caspase-dependent Pathway That Is Cholesterol Insensitive

Authors: John G, Pastorino; Nataly, Shulga;

Tumor Necrosis Factor-α Can Provoke Cleavage and Activation of Sterol Regulatory Element-binding Protein in Ethanol-exposed Cells via a Caspase-dependent Pathway That Is Cholesterol Insensitive

Abstract

Ethanol induces the development of hepatic steatosis, increasingly recognized as causing vulnerability to subsequent liver injury. Ethanol has been shown to activate SREBP-1 (sterol regulatory element-binding protein) processing through the conventional cholesterol-sensitive pathway (1). The present study demonstrates that ethanol can also bring about SREBP-1 cleavage and activation through a novel pathway dependent on the endoplasmic reticulum-localized caspases-4 and -12. Evidence is presented that tumor necrosis factor can stimulate caspase-4 and -12 activation in ethanol-exposed cells, which cleaves SREBP-1 to a transcriptionally active form to induce the synthesis of lipogenic enzymes and triglycerides. Moreover, the caspase-4 and -12-dependent activation of SREBP-1 is insensitive to the normal negative feedback exerted by cholesterol and is mediated by the translocation of the scaffolding protein, TRAF-2, to the endoplasmic reticulum.

Keywords

Sterol Regulatory Element Binding Proteins, Ethanol, Transcription, Genetic, Tumor Necrosis Factor-alpha, Endoplasmic Reticulum, Models, Biological, Caspases, Initiator, Rats, Cholesterol, Caspases, Cell Line, Tumor, Animals, Humans, Caspase 12, Triglycerides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Average
gold