Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Caltech Authors (Cal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Chemical Biology
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Targeted Chemical Wedges Reveal the Role of Allosteric DNA Modulation in Protein−DNA Assembly

Authors: Moretti, Rocco; Donato, Leslie J.; Brezinski, Mary L.; Stafford, Ryan L.; Hoff, Helena; Thorson, Jon S.; Dervan, Peter B.; +1 Authors

Targeted Chemical Wedges Reveal the Role of Allosteric DNA Modulation in Protein−DNA Assembly

Abstract

The cooperative assembly of multiprotein complexes results from allosteric modulations of DNA structure as well as direct intermolecular contacts between proteins. Such cooperative binding plays a critical role in imparting exquisite sequence specificity on the homeobox transcription factor (Hox) family of developmental transcription factors. A well-characterized example includes the interaction of Hox proteins with extradenticle (Exd), a highly conserved DNA binding transcription factor. Although direct interactions are important, the contribution of indirect interactions toward cooperative assembly of Hox and Exd remains unresolved. Here we use minor groove binding polyamides as structural wedges to induce perturbations at specific base steps within the Exd binding site. We find that allosteric modulation of DNA structure contributes nearly 1.5 kcal/mol to the binding of Exd to DNA, even in the absence of direct Hox contacts. In contrast to previous studies, the sequence-targeted chemical wedges reveal the role of DNA geometry in cooperative assembly of Hox-Exd complexes. Programmable polyamides may well serve as general probes to investigate the role of DNA modulation in the cooperative and highly specific assembly of other protein-DNA complexes.

Keywords

Homeodomain Proteins, Models, Molecular, 570, Base Sequence, DNA, 540, Protein Structure, Tertiary, Nylons, Drosophila melanogaster, Allosteric Regulation, Animals, Nucleic Acid Conformation, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
Green
bronze